Learning Objectives

- To learn about the many different marine organisms that are classified as plankton.
- To understand the classification schemes for plankton.
- To learn how the various groups of plankton
- · are different and similar to each other
- To understand the role that plankton play in the marine ecosystem

Plankton

- From the Greek word *planktos*
 - "that which is made to drift or wander"
 - Limited mobility with respect to currents, either drift or swim weakly
 - Central components of marine ecosystems
 Base of the food chain
 - Generally small (less than a few mm)

Categories of Plankton

Phytoplankton

- "plant" plankton; autrophs
- Use photosynthesis (solar energy) to generate organic matter. They are Primary Producers
- Both eukaryotic and prokaryotic (cyanobacteria)
 Zooplankton
- "animal" plankton; heterotrophs
- Both uni- and multi-cellular
- They are primary & secondary consumers
- consumers
- Bacterioplankton – Bacteria and Archaea

Classification by Size

Picoplankton*	< 2 μm (human hair = 100 μm
Nanoplankton	2 - 20 μm
Microplankton (Net)	20 - 200 μm
Macroplankton	up to 2 mm
*Most abundant - 100 million/L	

Sampling the Plankton

•Plankton net can only capture macroplankton

•Smaller plankton must be filtered out of the water

Flotation Mechanisms

- Plankton density > seawater
 They sink
- Adaptations
 - Shape
 - Objects of similar weight but different shap
 - sink at different rates
 - Larger surface area means slower sinking \rightarrow
 - surface area to volume ratio

 Spines and "feather"-like appendages
 - Flagella
 - Store light ions or oils in cells

Common Phytoplankton

- Cyanobacteria*
- Diatoms
- Dinoflagellates
- Coccolithophorids
- Green algae*
- *picoplankton

Most Abundant Plankton

Cyanobacteria

- Earliest O2 producers
- Referred to commonly as blue-green algae but they are bacteria
- Nitrogen cycling: convert N to N₂, NO₃
- Make long filaments or mats
- May account for 80% of productivity in tropics

Cyanobacteria

- Most abundant phytoplankton in the open ocean, because they can survive in low nutrient conditions
- Depending on season can produce 10-50% of net primary productivity
- Blue-green algae can produce toxic blooms

Diatoms - 2nd most productive dia "through"; tomos "to cut"

- Important in creating O_2 rich atmosphere ~ 100 mya
- Thousands of different species
- Marine & freshwater
- Pelagic & benthic
- Nanoplankton to macroplankton
- Coastal and open ocean
- 40% of primary productivity

Diatoms

- Coated by organic compounds that prevents the silica from dissolving
- Diatoms control the oceans cycling of silicate
- Valves a major source of sediment
- Highly efficient at photosynthesis

Bacterioplankton

- Includes Bacteria and Archaea
- Small
- Heterotrophic or chemosynthetic
- Responsible for decomposition of organic matter
- Release nutrients that were incorporated in other organisms back into the water → Important to marine food webs!

