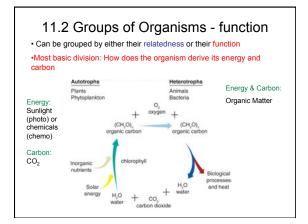
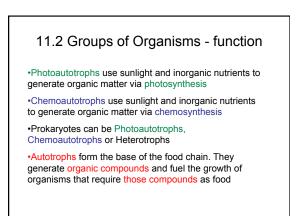
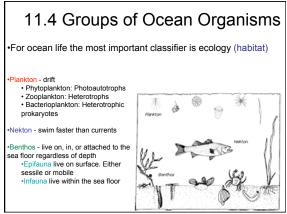
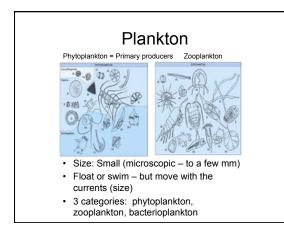

Learning Objectives

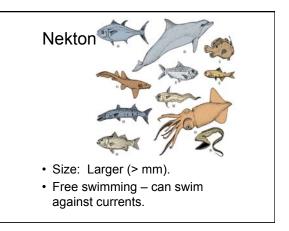

- 1. To understand how ocean life is grouped together
- 2. How do the changes in important physical properties in the oceans affect marine organisms?
 - temperature, salinity, pressure,buoyancy, and the availability of light
- 3. Understand how organisms adapt to abiotic and biotic stresses
- 4. To learn about the close relationships that occur between different marine species

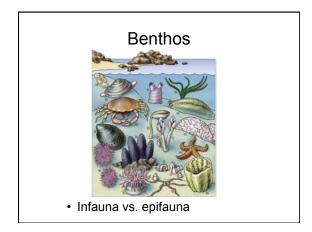

Marine Biology & Ecology

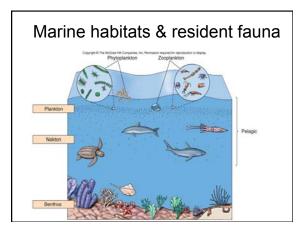
- Study of the abundance and distribution of marine organisms
- Study the relationships between organisms and their environment

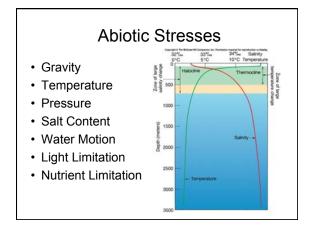








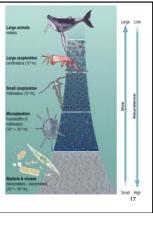

Vocabulary Review Combining Relatedness & Function •Prokaryotes •Prokaryotes •Photoautotrophs •Heterotrophs In the Ocean What would be an example of a Photoautotrophic Eukaryote? What would be an example of a Heterotrophic Eukaryote? What would be an example of a Chemoautotrophic Prokaryote?



Marine fauna

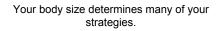
- Is the distribution of marine fauna within the marine ecosystem random?
- No. The observed distribution of marine fauna is determined by organism adaptations to abiotic and biotic factors.

11.5 Facts of Ocean Life Stresses Abiotic Biotic Adaptations



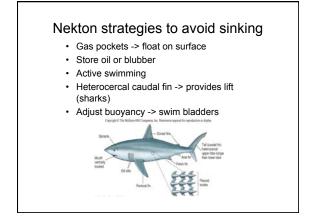
Biotic Stresses Predation Competition Food

- Space
- Reproduction
- Parasitism
- CO₂, O₂ levels
- Nutrients


11.3 Size

- Size and abundance are inversely related in the oceans
- Organisms span an incredible range of sizes and abundances, from microns to meters and millions per mL to hundreds per ocean basin

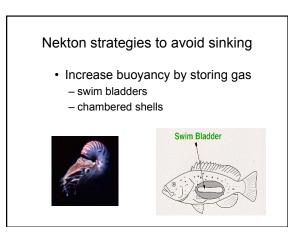
Your body size determines many of your strategies.


- If you are Small:
 - You have a high surface area to volume ratio.
 - Most of your cells are close to the exterior of your body.
 - Diffusion is an option to move nutrients and oxygen into your body and remove wastes.
 - Conductive heat transfer works well.
 - Viscosity controls your locomotion.

- If you are LARGE:
 - You have a low surface area to volume ratio.
 - <u>Relatively few</u> of your cells are close to the exterior of your body.
 - Diffusion is NOT an option to move nutrients and oxygen into your body and remove wastes. Active transport must be used.
 - Conductive heat transfer DOES NOT WORK.
 - GRAVITY (and inertia) control your
 - locomotion.

Gravity

- How do you maintain position in the water column?
- Plankton:
 - High surface area to volume ratio
 - Add spines, appendages or exoskeleton to your surface to increase surface area
 - Maintain density very near that of seawater
 - Incorporate swimming devices that work in viscous circumstances flagella, cilia, flat legs



Nekton strategies to avoid sinking

 Gas pockets and swimming bells: – Large Cnidarians

Light

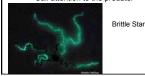
•Euphotic Zone photosynthesis

•Twilight Zone - objects can be seen during day

•Aphotic Zone - no light

•Phytoplankton must be able to adapt to large changes in light levels. They often are mixed into the deeper, darker waters.

•For example, what happens to phytoplankton when a large storm goes by?



Bioluminescence

 Within cells a specific enzyme acts on a substrate to produce light

•Often triggered by physical movement - wake of a boat • Main reason: Predator Avoidance

•"Startle" the predator •Call attention to the predator

Bioluminescence: Other reasons

•Bacteria glow so they will be eaten

Attract and lure prey

•Use the light to see (flashlight fish)

Color

 Many organisms are transparent to blend into the water
 Camouflage

– Corals

– Ocean floor

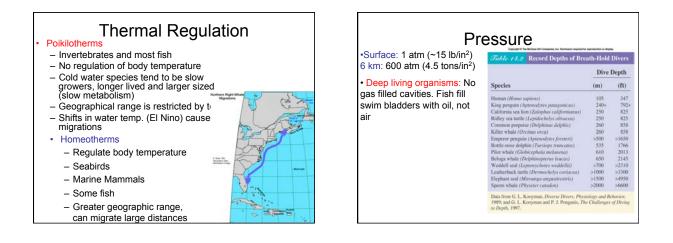
•Countershading - light

undersides, dark backs

Salinity


Organisms must maintain internal salt content. To maintain salt content different from surrounding waters, organism must add or remove salt

Osmosis - transfer of water through cell membrane from low to high salinity


Most benthos - Internal salt content same as external. Salinity hardly varies at ocean bottom.

Most fish - Internal salt content lower than external. Must continuously drink seawater and excrete salt.

Sharks & Rays - maintain high levels of urea (which acts like a salt) in tissues. Eliminates the osmotic gradient

Pressure and air breathing fauna that dive to great depths....

- Penguins: can dive to > 500 m on one breath.
- Sperm whales: can dive >2000 m on one breath.
- These and others have specialized hemoglobin in their blood that can slowly release oxygen.
- Sperm whales have rib cages and lungs that are designed to collapse with pressure and reinflate under normal conditions.

13.6 Close Associations

- Symbiosis close ecological relationship between different species. 3 types:
- Commensalism one partner benefits, one partner is unaffected
- Barnacles/marine mammals
- Mutualism both partners benefit
 Clownfish/anemone
- Clownfish/anen
 Zooxanthellae

Close Associations

- Symbiosis close ecological relationship between different species. 3 types:
- Parasitism one partner lives at the expense of another. Parasites get food/shelter while harming their hosts

Sea lice/juvenile salmon

