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CHAPTER | R WIS e

‘... the chidden billow seems to pelt the clouds ...’
Othello, Act 11, Scene L

Sea waves have attracted attention and comment throughout recorded
history. Aristotle (384—-322 Bc) observed the existence of a relationship
between wind and waves, and the nature of this relationship has been a
subject of study ever since. However, at the present day, understanding of
the mechanism of wave formation and the way that waves travel across the
oceans is by no means complete. This is partly because observations of
wave characteristics at sea are difficult, and partly because mathematical
models of wave behaviour are based upon the dynamics of idealized fluids,
and ocean waters do not conform precisely with those ideals. Nevertheless,
some facts about waves are well established, at least to a first
approximation, and the purpose of this Chapter is to outline the qualitative
aspects of water waves and to explore some of the simple relationships of
wave dimensions and characteristics.

We start by examining the dimensions of an idealized water wave, and the
terminology used for describing waves (Figure 1.1).
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Figure 1.1 Vertical profile of two successive e [ e SR
idealized ocean waves, showing their linear wavelength, L
dimensions and sinusoidal shape.

Wave height (H) refers to the overall vertical change in height between the
wave crest (or peak) and the wave trough. The wave height is twice the
wave amplitude (a). Wavelength (L) 1s the distance between two
successive peaks (or two successive troughs). Steepness is defined as wave
height divided by wavelength (H/L) and, as can be seen in Figure 1.1, is not
the same thing as the slope of the sea-surface between a wave crest and its
adjacent trough. The time interval between two successive peaks (or two
successive troughs) passing a fixed point is known as the period (7), and is
generally measured in seconds. The number of peaks (or the number of
troughs) which pass a fixed point per second is known as the frequency ().

QUESTION 1.1 If a wave has a frequency of 0.2 57!, what is its period?

As the answer to Question 1.1 shows, period is the reciprocal of frequency.
We will return to this concept in Section 1.2.
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1.1 WHAT ARE WAVES?

Waves are a common occurrence in everyday life, and are manifested as, for
example, sound, the motion of a plucked guitar string, ripples on a pond, or
the billows on the ocean. It is not easy to define a wave. Before attempting
to do so, let us consider some of the characteristics of wave motion:

I A wave transfers a disturbance from one part of a material to another.
(The disturbance caused by dropping a stone into a pond is transmitted
across the pond by ripples.)

2 The disturbance is propagated through the material without any
substantial overall motion of the material itself. (A floating cork merely
bobs up and down on the ripples, but experiences very little overall
movement in the direction of travel of the ripples.)

3 The disturbance is propagated without any significant distortion of the
wave form. (A ripple shows very little change in shape as it travels across a
pond.)

4 The disturbance appears to be propagated with constant speed.

If the material itself is not being transported by wave propagation, then
what is being transported?

The answer, ‘energy’, provides a reasonable working definition of wave
motion — a means whereby energy is transported across or through a
material without any significant overall transport of the material itself.

So, if energy, and not material, is being transported, what is the nature of
the movement observed when ripples cross a pond?

There are two aspects to be considered: first, the progress of the waves
(which we have already noted), and secondly, the movement of the water
particles themselves. Superficial observation of the effect of ripples on a
floating cork suggests that the water particles move ‘up and down’, but
closer observation will reveal that, provided the water is very much deeper
than the ripple height, the cork is describing a nearly circular path in a
vertical plane, parallel with the direction of wave movement. In a more
general sense, the particles are displaced from an equilibrium position, and
a wave motion is the propagation of regular oscillations about that
equilibrium position. Thus, the particles experience a displacing force and a
restoring force. The nature of these forces is often used in the descriptions
of various types of waves.

1.1.1 TYPES OF WAVES

All waves can be regarded as progressive waves, in that energy is moving
through, or across the surface of, the material. The so-called standing
wave, of which the plucked guitar string is an example, can be considered
as the sum of two progressive waves of equal dimensions, but travelling in
opposite directions. We examine this in more detail in Section 1.6.4.

Waves which travel through the material are called body waves. Examples
of body waves are sound waves and seismic P- and S-waves, but our main
concern in this Volume is with surface waves (Figure 1.2). The most
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familiar surface waves are those which occur at the interface between
atmosphere and ocean, caused by the wind blowing over the sea. Other
external forces acting on the fluid can also generate waves. Examples range
from raindrops falling into tidal pools, through diving gannets and ocean-
going liners to earthquakes (see Section 1.6.3).

The tides are also waves (Figure 1.2), caused by the gravitational influence
of the Sun and Moon and having periods corresponding to the causative
forces. This aspect is considered in more detail in Chapter 2. Most other
waves, however, result from a non-periodic disturbance of the water. The
water particles are displaced from an equilibrium position, and to regain
that position they require a restoring force, as mentioned above. The
restoring force causes a particle to ‘overshoot’ on either side of the
equilibrium position. Such alternate di splacements and restorations
establish a characteristic oscillatory ‘wave motion’, which in its simplest
form has sinusoidal characteristics (Figures 1.1 and 1.6), and is sometimes
referred to as simple harmonic motion. In the case of surface waves on
water, there are two such restoring forces which maintain wave motion:

I The gravitational force exerted by the Earth.

2 Surface tension, which is the tendency of water molecules to stick
together and present the smallest possible surface to the air. So far as the
effect on water waves is concerned, it is as if a weak elastic skin were
stretched over the water surface.
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Figure 1.2 Types of surface waves, showing the relationships between wavelength, wave
frequency and period, the nature of the forces that cause them, and the relative amounts of
energy in each type of wave. Unfamiliar terms will be explained later. Note: Waves caused by
‘other wind waves’ are waves resulting from interactions between waves of higher frequency
as they move away from storm areas — see Section 1.4.2.
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Water waves are affected by both of these forces. In the case of waves with
wavelengths less than about 1.7 cm, the principal restoring force is surface
tension, and such waves are known as capillary waves. They are important
in the context of remote sensing of the oceans (Section 1.7.1). However,
the main interest of oceanographers lies with surface waves of wavelengths
greater than 1.7 cm, and the principal restoring force for such waves is
gravity; hence they are known as gravity waves (Figure 1.2).

Gravity waves can also be generated at an interface between two layers of
ocean water of differing densities. Because the interface is a surface, such
waves are, strictly speaking, surface waves, but oceanographers usually
refer to them as internal waves. These occur most commonly where there
is a rapid increase of density with depth, i.¢. a steep density gradient, or
pycnocline. Pycnoclines themselves result from steep gradients of
temperature and/or salinity, the two properties which together govern the
density of seawater. Because the difference in density between two water
layers is much smaller than that between water and air, less energy is
required to displace the interface from its equilibrium position, and
oscillations are more easily set up at an internal interface than at the sea-
surface. Internal waves travel considerably more slowly than most surface
waves. They have greater amplitudes than all but the largest surface waves
(up to a few tens of metres), as well as longer periods (minutes or hours
rather than seconds, cf. Figure 1.2) and longer wavelengths (hundreds
rather than tens of metres). Internal waves are of considerable importance
in the context of vertical mixing processes in the oceans, especially when
they break.

Not all waves in the oceans are displaced primarily in a vertical plane. For
example, because atmosphere and oceans are on a rotating Earth, variation
of planetary vorticity with latitude (i.e. variation in the angular velocity
of the Earth’s surface and hence in the effect of the Earth’s rotation on
horizontal motions) causes horizontal deflection of atmospheric and
oceanic currents, and provides restoring forces which establish oscillations
mainly in a horizontal plane, so that easterly or westerly currents tend to
swing back and forth about an equilibrium latitude. These large-scale
horizontal oscillations are known as planetary (or Rossby) waves, and
may occur as surface or as internal waves. They are not gravity waves (i.e.
the restoring force is not gravity) and so do not appear in Figure 1.2.

1.1.2 WIND-GENERATED WAVES IN THE OCEAN

In 1774, Benjamin Franklin said: ‘Air in motion, which is wind, in passing
over the smooth surface of the water, may rub, as it were, upon that
surface, and raise it into wrinkles, which, if the wind continues, are the
elements of future waves’.

In other words, if two fluid layers having differing speeds are in contact,
there is frictional stress between them and there is a transfer of momentum
and energy. The frictional stress exerted by a moving fluid is proportional
to the square of the speed of the fluid, so the wind stress exerted upon a
water surface is proportional to the square of the wind speed. At the sea-
surface, most of the transferred energy results in waves, although a small
proportion is manifest as wind-driven currents. In 1925, Harold Jeffreys
suggested that waves obtain energy from the wind by virtue of pressure
differences caused by the sheltering effect provided by wave crests
(Figure 1.3).



Figure 1.3  Jeffreys ‘sheltering” model of wave
generation. Gurved grey lines indicate air flow;
shorter, black arrows show water movement.
The rear face of the wave against which the wind
blows experiences a higher pressure than the
front face, which is sheltered from the force of
the wind. Air eddies are formed in front of each
wave, leading to excesses and deficiencies of
pressure (shown by plus and minus signs
respectively), and the pressure difference pushes
the wave along.
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Although Jeffreys” hypothesis fails to explain the formation of very small
waves, it does seem to work if:

1 Wind speed exceeds wave speed.
2 Wind speed exceeds 1 ms-1.
3 The waves are steep enough to provide a sheltering effect.

Empirically, it can be shown that the sheltering effect is at a maximum
when wind speed is approximately three times the wave speed. In general,
the greater the amount by which wind speed exceeds wave speed, the
steeper the wave. In the open oceans, most wind-generated waves have
steepness (H/L) of about 0.03 to 0.06. However, as we shall see later, wave
speed in deep water is not related to wave steepness, but to wavelength —
the greater the wavelength, the faster the wave travels.

QUESTION 1.2 Two waves have the same height, but differing steepness.
Which of the two waves will travel the faster?

Consider the sequence of events that occurs if, after a period of calm weather,
a wind starts to blow, rapidly increases to a gale, and continues to blow at
constant gale force for a considerable time. No significant wave growth
occurs until wind speed exceeds 1 ms~'. Then, small steep waves form as the
wind speed increases. Even after the wind has reached a constant gale force,
the waves continue to grow with increasing rapidity until they reach a size
and wavelength appropriate to a speed which corresponds to one-third of the
wind speed. Beyond this point, the waves continue to grow in size,
wavelength and speed, but at an ever-diminishing rate. On the face of it, one
might expect that wave growth would continue until wave speed was the
same as wind speed. However, in practice wave growth ceases whilst wave
speed 1is still at some value below wind speed. This is because:

1 Some of the wind energy is transferred to the ocean surface via a
tangential force, producing a surface current.

2 Some wind energy is dissipated by friction, and is converted to heat and
sound.

3 Energy is lost from larger waves as a result of white-capping, i.e.
breaking of the tip of the wave crest because it is being driven forward by
the wind faster than the wave itself is travelling. Much of the energy
dissipated during white-capping is converted into forward momentum of the
water itself, reinforcing the surface current initiated by process 1 above.
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Figure 1.4 Wave energy spectra for three fully
developed seas, related to wind speeds of 20, 30
and 40 knots (about 10, 15 and 20 m s
respectively). The area under each curve is a
measure of the total energy in that particular
wave field.

1.1.3 THE FULLY DEVELOPED SEA

We have already seen that the size of waves in deep water is governed not
only by the actual wind speed, but also by the length of time the wind has
been blowing at that speed. Wave size also depends upon the unobstructed
distance of sea, known as the fetch, over which the wind blows.

Provided the fetch is extensive enough and the wind blows at constant speed
for long enough, an equilibrium is eventually reached, in which energy 1s
being dissipated by the waves at the same rate as the waves receive energy
from the wind. Such an equilibrium results in a sea state called a fully
developed sea, in which the size and characteristics of the waves are not
changing. However, the wind speed is usually variable, so the ideal fully
developed sea, with waves of uniform size, rarely occurs. Variation in wind
speed produces variation in wave size, so, in practice, a fully developed sea
consists of a range of wave sizes known as a wave field. Waves coming into
the area from elsewhere will also contribute to the range of wave sizes, as
will interaction between waves — a process we explain in Section 1.4.2.

Oceanographers find it convenient to consider a wave field as a spectrum of
wave energies (Figure 1.4). The energy contained in an individual wave is
proportional to the square of the wave height (see Section 1.4).

QUESTION 1.3  Examine Figure 1.4. Does the energy contained in a wave
field increase or decrease as the average frequency of the constituent waves
increases?
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Figure 1.5 A typical wave record, i.e. a record
of variation in water level (displacement from
equilibrium) with time at one position.
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1.1.4 WAVE HEIGHT AND WAVE STEEPNESS

As was hinted in Section 1.1.3, the height of any real wave is determined by
many component waves, of different frequencies and amplitudes, which
move into and out of phase with, and across each other (“in phase’ means
that peaks and troughs coincide). In theory, if the heights and frequencies of
all the contributing waves were known, it would be possible to predict the
heights and frequencies of the real waves accurately. In practice, this is
rarely possible. Figure 1.5 illustrates the range of wave heights occurring
over a short time at one location — there is no obvious pattern to the
variation of wave height.
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For many applications of wave research, it is necessary to choose a single
wave height which characterizes a particular sea state. Many oceanographers
use the significant wave height, A3, which is the average height of the
highest one-third of all waves occurring in a particular time period. In any
wave record, there will also be a maximum wave height, H . Prediction of
H,,,, for a given period of time has great value in the design of structures
such as flood barriers, harbour installations and drilling platforms. To build
these structures with too great a margin of safety would be unnecessarily
expensive, but to underestimate H,,,, could have tragic consequences.
However, it is necessary to emphasize the essentially random nature of

H oy Although the wave Hi,,4(05 years)» Will occur on average once every

25 years, this does not mean such a wave will automatically occur every

235 years — there may be periods much longer than that without one. On the
other hand, two such waves might appear next week.

As wind speed increases, so Hyy; in the fully developed sea increases. The
relationship between sea state, Hy; and wind speed is expressed by the
Beaufort Scale (Table 1.1, overleal). The Beaufort Scale can be used to
estimate wind speed at sea, but is valid only for waves generated within the
local weather system, and assumes that there has been sufficient time for a
fully developed sea to have become established (cf. Figure 1.4).

The absolute height of a wave is less important to sailors than is its steepness
(H/L). As mentioned in Section 1.1.2, most wind-generated waves have a
steepness in the order of 0.03 to 0.06. Waves steeper than this can present
problems for shipping, but fortunately it is very rare for wave steepness to
exceed 0.1. In general, wave steepness diminishes with increasing
wavelength. The short choppy seas rapidly generated by local squalls are
particularly unpleasant to small boats because the waves are steep, even
though not particularly high. On the open ocean, very high waves can usually
be ridden with little discomfort because of their relatively long wavelengths.
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Table 1.1 A selection of information from the Beaufort Wind Scale.

Beaufort Name Wind speed State of the sea-surface Significant
No. (mean) wave height,
knots ms! Hy; (m)

0 Calm <1 0.0-0.2 Sea like a mirror 0

1 Light air 1-3 0.3-1.5 Ripples with appearance of scales; no foam crests 0.1-0.2

2 Light breeze 4-6 1.6-3.3 Small wavelets; crests have glassy appearance but 0.3-0.5
do not break

3 Gentle brecze 7-10 34-54 Large wavelets; crests begin to break; scattered 0.6-1.0
white horses

4 Moderate breeze l1-16 5.5-79 Small waves, becoming lon ger; fairly frequent 15
white horses

2 Fresh breeze 17-21 8.0-10.7 Moderate waves taking longer form: many 2.0
white horses and chance of some spray

6 Strong breeze 22-27 10.8-13.8 Large waves fi orming; white foam crests 35
exlensive everywhere and spray probable

7 Near gale 28-33 13.9-17.1 Sea heaps up and white foam from breaking 5.0

waves begins to be blown in streaks: spindrift
begins to be seen
8 Gale 34-40 17.2-20.7 Moderately high waves of Zreater length; edges 7.5
of crests break into spindrift; foam is blown in
well-marked streaks

9 Strong gale 41-47 20.8-24.4  High waves: dense streaks of foam; sea begins 9.5
to roll; spray may affect visibility
10 Storm 48-55 24.5-284  Very high waves with overhanging crests; 12.0

sca-surface takes on white appearance as foam
in great patches is blown in very dense streaks:
rolling of sea is heavy and visibility reduced
11 Violent storm 56-64 28.5-32.7 Exceptionally high waves; sea covered with long 15.0
white patches of foam: small and medium-sized
ships might be lost to view behind waves for long
times; visibility further reduced

12 Hurricane >64 >32.7 Air filled with foam and spray; sea completely >15

white with driving spray: visibility greatly reduced

1.2 SURFACE WAVE THEORY

To simplify the theory of surface waves, we assume here that the wave-form
is sinusoidal and can be represented by the curves shown in Figures 1.1 and
1.6. This assumption allows us to consider wave displacement (17) as simple
harmonic motion, i.e. a sin usoidal variation in water level caused by the
wave’s passage. Figure 1.1 shows how the displacement varies over distance
at a fixed instant in time — a ‘snapshot’ of the passing waves — whereas
Figure 1.6 shows how wave di splacement varies with time at a fixed point.

time
Figure 1.6 The displacement of an idealized
Wwave at a fixed point, plotted against time.
Maximum and minimum displacements are
recorded in fractions of the period, T.

displacement, »
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Before examining displacement, let us remind ourselves of the relationship
between period and frequency.

QUESTION 1.4 If 16 successive wave troughs pass a fixed point during a
time interval of one minute and four seconds, what is the frequency of the
waves?

The displacement (17) of a wave at a fixed instant in time, or at a fixed point
in space, varies between +a (at the peak) and —q (in the trough).
Displacement is zero where L = 4L on Figure 1.1 (and at intervals of 7,/2
along the distance axis). Displacement is also zero at T = +T on Figure 1.6
(and at intervals of 7/2 along the time axis).

QUESTION 1.5 Use Figure 1.6 to help you answer the following questions.
The peak, or crest, of a wave having a wavelength of 624 m, a frequency of
0.05s7!, and travelling in deep water, passes a fixed point P. What is the
displacement at P (in terms of the amplitude, a):

(a) 30 seconds after the peak has passed?

(b) 80 seconds after the peak has passed?

(c) 85 seconds after the peak has passed?

What is the displacement at a second point, Q, which is 312 m away from P
in the direction of wave propagation:

(d) when the displacement at P is zero?

(e) when the displacement at P is —q?

() 5 seconds after a trough has passed P?

The curves shown in Figures 1.1 and 1.6 are both sinusoidal. However,
most wind-generated waves do not have simple sinusoidal forms. The
steeper the wave, the further it departs from a simple sine curye. Very steep
waves resemble a trochoidal curve, which is illustrated in Figure 1.7.

mean water level distance

s e S el

Figure 1.7 Profile of trochoidal waves.

A point marked on the rim of a car tyre will appear to trace out a trochoidal
curve as the car is driven past an observer. Invert that pattern and you have
the profile of a trochoidal water wave. We do not need to delve into the
mathematical complexities of trochoidal wave forms here, because the
sinusoidal model is sufficient for our purposes.
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1.2.1 MoTION OF WATER PARTICLES

Water particles in 3 wave in deep water move in an almost closed circular
path. At wave crests, the particles are moving in the same direction as wave

of even the most Severe storm at sea, and knowledge of the exponential
decrease of wave influence with depth has implications for the design of
stable floating oil rigs.

where depth is Jess than half the wavelen gth and the waves ‘fee]’ the sea-
bed, the orbits become progressively flattened with depth (Fj gure 1.8(c) and
(d)). The significance of these changes will be seen in Section 1.5, and in
the Chapters on sediment movement.

Figure 1.8(e): they are in Opposite directions on either side of the interface,
The passage of nternal waves can often be detected visually by secondary
effects at the surface, especiall y if the upper layer (above the Pycnocline) is
not very thick and the seq is relatively calm. As the internal waves travel
along, the upper layer becomes alternately thinner (over the internal wave
crests) and thicker (over the troughs). The result is that there are
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1.2.2 WAVE SPEED

As we have already hinted, there are mathematical relationships linking the
characteristics of wavelength (L), wave period (T) and wave height (H) to
wave speed in deep water and to wave energy. First, let us consider wave
speed (c¢) (the ¢ stands for ‘celerity of propagation’).

The speed of a wave can be ascertained from the time taken for one
wavelength to pass a fixed point. As one wavelength (L) takes one wave
period (7) to pass a fixed point, then:

c=LIT (1.1
which is simply a form of the well-known expression: speed = distance/time.

So, if we know any two of the variables mn Equation 1.1, we can calculate
the third.

Two other terms you may meet in oceanographic literature are the wave
number; k, which is 27/L, and the an gular frequency o, which is 27/T- both
of these relate to the sinusoidal nature of the idealized wave form. The units
of k are m™! (i.e. number of waves per metre), and the units of & are !

(i.e. number of cycles (waves) per second).

QUESTION 1.6  How would ¢ be expressed in terms of k and o?

1.2.3 WAVE SPEED IN DEEP AND IN SHALLOW WATER

You may have noticed that when wave speeds have been mentioned we
have been careful to state that the waves described were travelling in deep
water. Thus you might have suspected that in shallow water, water depth
has an effect on wave speed, because of interaction with the sea-bed. If so,
you were quite right. Wave speed in any water depth can be represented by
the general equation:

c= 8L tanh ( -zid) (1.2)
V 2 L

where the acceleration due to gravity g=98ms2 [ = wavelength (m), and
d = water depth (m). Tanh is a mathematical function known as the hyperbolic
tangent. All you need to know about it in this context is that if x is small,

say less than (.05, then tanh x =~ %, and if x is larger than 7, then tanh x = I.

QUESTION 1.7 Armed with Equation 1.2, and the information given above
about the tanh function, work out the answers to the following questions:
(a) What does Equation 1.2 become if the water depth exceeds half the
wavelength?

(b) What does Equation 1.2 become if the water depth is very much smaller
than L?

In summary, the implications of your answers to Question 1.7 in terms of
factors affecting wave speed are as follows (cf. Figure 1.8):
I In water deeper than half the wavelen gth, wave speed depends upon the

wavelength, and Equation 1.2 approximates to:

C-VZTI: (1.3)
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Diameters of circular particle orbits decrease exponentially downwards to
near zero at depth = L/2 (Figure 1.8(a)).

2 In water very much shallower than the wavelength (in practice, when
d < L/20), wave speed is determined by water depth, and Equation 1.2
approximates to:

c=.lgd (1.4)

Horizontal diameters of particle orbits remain constant in size with depth,
but ellipticity increases downwards (Figure 1.8(d)).

3 When d lies between 7./20 and L/2, the full form of Equation 1.2 is
required. Hence, to calculate wave speed you would need to know wavelength
and depth, and have access to a set of hyperbolic tangent tables, or a calculator
with hyperbolic functions on its keyboard. Particle orbits decrease in size
downwards and become progressively more elliptical (Figure 1.8(¢)).

The answer to Question 1.7(a) (i.e. Equation 1.3) allows us to explore
further the relationships between 7 and L. We saw in Equation 1.1 that
¢=L/T, so it is possible to combine Equations 1.1 and 1.3,

QUESTION 1.8 Derive an equation for wavelength (L) in terms of period (7)),
using Equations 1.1 and 1.3,

The answer to Question 1.8 provides an equation expressing L in terms of 7' i.e.

2
2

A similar exercise, substituting the expression obtained for L from Equation
1.5 into Equation 1.1, will give ¢ in terms of 7T -

o= 2T

on (1.6)

Thus, it is possible, given only one of the wave characteristics c,TorL, to
calculate either of the other two. Moreover, by substituting the numerical
values of the constants involved, the equations can be simplified as follows:

Equation 1.3 becomes ¢ = /567 (1.7)
Equation 1.5 becomes . = 1.5672 (1.8)
Equation 1.6 becomes ¢ = 1.56T (1.9)

QUESTION 1.9  Show (a) how the numerical factor 1.56 in each of Equations
1.710 1.9 is derived, and (b) that the units in those equations work out correctly.

QUESTION 1.10
(a) The period of a wave is 20 8. At what speed will it travel in deep water?
(b) At what speed will a wave of wavelength 312 m trave] in deep water?

(c) At what speeds will each of the waves referred to in (a) and (b) above
travel in water of 12 m depth?
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1.2.4 ASSUMPTIONS MADE IN SURFACE WAVE THEORY

The simple wave theory introduced above is a first-order approximation,
and makes the following assumptions:

1 The wave shapes are sinusoidal.

2 The wave amplitudes are very small compared with wavelengths and
depths.

3 Viscosity and surface tension can be ignored.

4 The Coriolis force (see Section 2.3) and vorticity (Section 1.1.1), which
result from the Barth’s rotation, can be ignored.

5 The depth is uniform, and the bottom has no bumps or hummocks.

6 The waves are not constrained or deflected by land masses, or by any
other obstruction.

7 That real three-dimensional waves behave in a way that is analogous to
a two-dimensional model.

None of the above assumptions is valid in the strictest sense, but predictions
based on simple models of surface wave behaviour approximate closely to
how wind-generated waves behave in practice.

1.3 WAVE DISPERSION AND GROUP SPEED

Those deep-water waves that have the greatest wavelen gths and longest
periods travel fastest, and thus are first to arrive in regions distant from the
storm which generated them. This separation of waves by virtue of their
differing rates of travel is known as dispersion, and Equation 1.3

(c= -\@1 /2m) is sometimes known as the dispersion equation, because it
shows that waves of longer wavelength (L) travel faster than shorter
wavelength waves.

The simple experiment of tossing a stone into a still pond shows that a band
of ripples is created, which gets wider with increasing distance from the
original disturbance. Ripples of longer wavelen gth progressively out-
distance shorter ones — an example of dispersion in action. There is a
second feature of the ripple band, which is not obvious at first si ght. Each
individual ripple travels faster than the band of ripples as a whole. A ripple
appears at the back of the band, travels through it, and disappears out of the
front. The speed of the band, called the group speed, is about half the wave
speed of the individual ripples which travel through that band.

To understand the relationship between wave speed and group speed, the
additive effect of two sets of waves (or wave trains) needs to be examined.
If the difference between the wavelengths of two sets of waves is relatively
small, the two sets will ‘interfere’ and produce a single set of resultant
waves. Figure 1.9 shows a simplified and idealized example of interference.
Where the crests of the two wave trains coincide (i.e. they are ‘in phase’),
the wave amplitudes are added, and the resultant wave has about twice the
amplitude of the two original waves. Where the two wave trains are ‘out of
phase’, such that the crests of one wave train coincide with the trou ghs of
the other, the amplitudes cancel out, and the water surface has minimal
displacement.
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Figure 1.9 (a) The merging of two wave trains
(shown in red and blue) of slightly different
wavelengths (but the same amplitudes), to form
wave groups (b).

Figure 1.10 The relationship between wave
speed (phase speed) and group speed. As the
wave advances from left to right, each wave
moves through the group to die out at the front
(e.g. wave 1), as new waves form at the rear
(e.9. wave 6). In this process, the distance
travelled by each individual wave as it moves
from the rear to front of the group is twice that
travelled by the group as a whole. Hence, the
wave speed is twice that of the group speed.
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The two component wave trains thus interact, each losing its individual
identity, and combine to form a series of wave groups, separated by regions
almost free from waves. The wave group advances more slowly than
individual waves in the group, and thus in terms of the occurrence and
propagation of waves, group speed is more significant than speeds of the
individual waves. Individual waves do not persist for long in the open
ocean, only as long as they take to pass through the group. Figure 1.10
shows the relationship between wave speed (sometimes called phase speed)
and group speed in the open ocean.

The group speed is half the average speed of the two wave trains, and for
your interest we present below an abbreviated form of how this relationship
is derived. It is not necessary to follow all the steps that lead to Equation
1.10 (overleaf), still less to memorize them.

If two sets of waves are interfering to produce a succession of wave groups,
the group speed ( ¢,) is the difference between the two an gular frequencies

(o) and o) divided by the difference between the two wave numbers (k,
and k, respectively), i.e. )
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We have seen (Question 1.6) that ¢ = o/k, and we know (Section 1.2.2) that
angular frequency, o, can be expressed in terms of T, also that wave number
k, can be expressed in terms of L. In addition, we know that Equations 1.6
and 1.3, respectively, enable us to express both T and L in terms of ¢
(Section 1.2.3). Hence, ¢, can be expressed in terms of the respective
speeds, ¢; and ¢,, of the two wave trains. The equation obtained is:
Cg _ 4] > [}

€] T€a

If ¢; is nearly equal to ¢,, this equation simplifies to:
cg= c2H2c
or ¢, = cf2 (1.10)

where c is the average speed of the two wave trains.
What happens to group speed when waves enter shallow water?

Equation 1.2 shows that as the water becomes shallower, wavelength
becomes less important, and depth more important, in determining wave
speed. As a result, in shoaling water, wave (phase) speed decreases,
becoming closer to group speed. Eventually, at depths less than /20, all
waves travel at the same depth-determined speed, there will be no wave—
wave interference, and therefore in effect each wave will represent its own
“group’. Thus, in shallow water, group speed can be regarded as equal to
wave (phase) speed.

1.4 WAVE ENERGY

The energy possessed by a wave is in two forms:

1 kinetic energy, which is the energy inherent in the orbital motion of the
water particles; and

2 potential energy possessed by the particles as a result of being displaced
from their mean (equilibrium) position.

For a water particle in a given wave, energy is continually being converted
from potential energy (at crest and trough) to kinetic energy (as it passes
through the equilibrium position), and back again.

The total energy (E) per unit area of a wave is given by:

E =2 (pgH?) (1.11)

where p is the density of the water (in kg m2), ¢ is 9.8 ms=2, and H is the
wave height (m). The energy (E) is then in joules per square metre (J m2).
Equation 1.11 shows that wave energy is proportional to the square of the
wave height.

QUESTION 1.11  Would the total energy of a wave be doubled if its
amplitude were doubled?
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1.4.1 PROPAGATION OF WAVE ENERGY

Figures 1.9 and 1.10 show that waves travel in groups in deep water, with
arcas of minimal disturbance between groups. Individual waves die out at
the front of each group. It is obvious that no energy is being transmitted
across regions where there are no waves, i.e. between the groups. It follows
that the energy is contained within the wave group, and travels at the group
speed. The rate at which energy is supplied at a particular location (e.g.a
beach) is called wave power, and is the product of group speed (c,) and
wave energy per unit area (E), expressed per unit length of wave crest.

QUESTION 1.12

(a) In the case of waves in deep water, what is the energy per square metre
of a wave field made up of waves with an average amplitude of 1.3 m? (Use
p=103x10°kgm3))

(b) What would be the wave power (in kW per metre of crest length) if the
waves had a steepness of 0.04? (1 watt= 1T s~!, and one kilowatt (kW)=103W,)

1.4.2 ATTENUATION OF WAVE ENERGY

Wave attenuation involves loss or dissipation of wave energy, resulting in a
reduction of wave height. Energy is dissipated in four main ways:

I White-capping, which involves transfer of wave energy to the kinetic
energy of moving water, thus reinforcing the wind-driven surface current
(Section 1.1.2).

2 Viscous attenuation, which is only important for very high frequency
capillary waves, and involves dissipation of energy into heat by friction
between water molecules.

3 Airresistance, which applies to large steep waves soon after they leave the
area in which they were generated and enter regions of calm or contrary winds.

4 Non-linear wave-wave interaction, which is more complicated than
the simple (linear) combination of frequencies to produce wave groups as
outlined in Section 1.3.

Non-linear interaction appears to be most important in the frequency range
0.2 to 0.3s7". Groups of three or four frequencies can interact in complex
non-linear ways, to transfer energy to waves of both higher and lower
frequencies. A rough but useful analogy is that of the collision of two drops of
water. A linear combination would simply involve the two drops coalescing
(adding together) into one big drop, whereas a non-linear combination is akin
to a collision between the drops so that they split into a number of drops of
differing sizes. The total amount of water in the drops (analogous to the total
amount of energy in the waves) is the same before and after the collision.

Thus, non-linear wave-wave interaction involves no loss of energy in itself,
because energy is simply ‘swapped’ between different frequencies.
However, the total amount of energy available for such ‘swapping’ will
gradually decrease, because higher frequency waves are more likely to
dissipate energy in the ways described under 1 and 2 above. For example,
higher frequency waves are likely to be steep, and thus more prone to
white-capping. Wave attenuation is greatest in the storm-generating area,
where there are waves of many frequencies, and hence more opportunities
for energy exchange between them.
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1.4.3 SWELL

The sea-surface is rarely still. Even when there is no wind, and the sea
‘looks like a mirror’, a careful observer will notice waves of very long
wavelength (say 306 to 600 m) and only a few centimetres amplitude. At
other times, a sea may include locally generated waves of small wavelength,
and travelling through these waves, possibly at a large angle to the wind,
other waves of much greater wavelength. Such long waves are known as
swell, which is simply defined as waves that have been generated elsewhere
and have travelled far from their place of origin. If you look out to sea on a
calm day, the waves that you see will be swell waves from a distant storm.
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Figure 1.11 (a) The spreading of swell from a storm centre, showing the area in which swell
might be expected. As distance from the storm increases, the length of the wave crest
increases, with a corresponding decrease in wave height and energy per unit length of wave —
spreadmg loss, discussed opposite.

(b) Wave record near a storm centre.

(c) Wave record of swell, well away from the storm centre.
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Systematic observations show that local winds and waves have very little
effect on the size and progress of swell waves, and swell seems able to pass
through locally generated seas without hindrance or interaction. Once swell
waves have left the storm area, their wave height gradually diminishes,

In the ocean, we find waves travelling in many directions, resulting in a
confused sea. To achieve g complete descri ption of such a sea-surface, the
amplitude, frequency and direction of travel of €ach component are needed.
The energy distribution of the sea-surface (cf. Figure 1.4) can then be
calculated, but, ag you might imagine, such a complex process requires
expensive equipment to measure the wave characteristics, and computer

facilities to perform the necessary calculations,

One or more components of a confused seg may be long waves or swell
resulting from distant storms. In practice, about 909 of the sea-surface
encrgy generated by the storm Propagates within an angle of 30° to 45°
either side of the wind direction. Consequen tly, waves generated by a storm
in a localized region of a large ocean radiate outwards as segment of a

Cnergy per unit length of Wave crest must decrease (and s0 must wave
' height), so that the tota energy of the wave front remains the same. This |
decrease in Cnergy per unit length of wave crest is known as spreading loss -
(of wave energy), and in the case of established swell wayes there is very |
little loss of wave energy apart from that caused by spreadin g over a
progressively wider front. '
The waves with the longest periods travel fastest, and progressively out- '
distance waves of hj gher frequencies (shorter periods). Near to the storm, .
dispersion is likely to be minima] (Figure L.11(b)), but the further one
. Moves from the storm [ocat on, the more clearly separated waves of
frequency differing frequencies become, resulting in the regular wave motions we

know as swel] (Figure 1.1 1(c)).

QUESTION 1.13 Figure 1.12 shows two wave-energy spectra, (a) and (b)
(cf. Figure 1.4). One represents the wave field energy in a smrm—genm'aring_
area; and the other represents the energy of the wave field in an area far
away from the storm. byt receiving swell from it. Which of the two spectra
represents which situation?

If you recorded the waves arriving from a storm a great distance (over

Energy per frequency interval

—
&

energy per frequency interval

1000 km) away, you would, as time progressed, see the peak in the wave-

—_—

{b) frequena o

shorter periods) By recordin g the frequencies of each of a series of swel]
Figure 112 Wave-energy Spectra, each Waves arriving at a point, it would be possible to calculate each of their
determined from wave heights measured over a speeds. o

short time interval, for two areas (a) and (b} in

the same ocean (not to scale). One area js a ) ; ;
storm centre, and the other is far away from the ~ method was often used to pmpomt where and when storms had occurred in

storm. (For use with Question 1.13) T€mote parts of the oceans.
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Figure 1.13  Plan view illustrating changes in
the speed of waves approaching the shore. Grey
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1.5 WAVES APPROACHING THE SHORE

It is a matter of common observation that waves coming onto a beach increase
in height and steepness and eventually break. Figure 1.13 shows a length of
wave crest, s, which is directly approaching a beach. As the water is shoaling,
the wave crest passes a first point where the water depth (d,) is greater than at a
second point nearer the shore (where the depth is d5). We assume that the
amount of energy within this length of wave crest remains constant, the wave is
not yet ready to break, and that water depth is less than 1/20 of the wavelength
(ie. Equation 1.4 applies: ¢ = ./gd ). Because wave speed in shallow water is
related to depth, the speed ¢, at depth d, is greater than the speed ¢, at depth d,.
If energy remains constant per unit length of wave crest, then

ElclS = Eng;S'
o L (1.12)

and because energy is proportional to the square of the wave height
(Equation 1.11) then we can write

B4 _m ng

=—= 1.13
El Co: H |2 ( )
Thus, both the square of the wave height and wave energy are inversely
proportional to wave speed in shallow water.

This relationship is straightforward once the wave has entered shallow
water. But what happens during the transition from deep to shallow water?

This is quite a difficult question, best answered by considering the highly
stmplified case illustrated in Figure 1.14. Imagine waves travelling shoreward
over deep water (depth greater than half the wavelength). Wave speed is then
governed solely by wavelength (Equation 1.3, ¢ = \[¢L/ 27. The energy is
being propagated at the group speed ( ¢g) which is approximately half the
wave speed (¢), Section 1.3. As the waves move into shallower water, wave
speed becomes governed by both depth and wavelen gth (Equation 1.2), but
once the waves have moved into shallow water, where d < L20, wave speed
becomes governed solely by depth (Equation 1.4) and is much reduced.
Remember from Section 1.3 that in shallow water group speed is equal to
wave speed. The rate at which energy arrives from offshore (Figure 1.14,
overleaf) must be equal to the rate at which energy moves inshore; so if the
group speed in shallow water is less than half the original wave speed (and
hence less than the original group speed) in deep water, the waves will show
corresponding increases in height and in energy per unit arca.

However, it is essential to realize that while the energy and height of
individual waves will increase as they enter shallow water, the rate of
supply of wave energy (wave power, Section 1.4.1) must remain constant
(ignoring frictional losses).

As mentioned earlier, when waves move into shallow water, the waves begin
to ‘feel the bottom’, the circular orbits of the water particles become flattened
(Figure 1.8(c) and (d)), and wave energy will be dissipated by friction at the
sea-bed, resulting in to-and-fro movement of sediments. The gentler the slope
of the immediate offshore region, the sooner the incoming waves will ‘feel’
the bottom, the greater will be the friction with the sea-bed and the greater the
energy loss before the waves finally break (see Section 1.5.2).
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We can estimate increase or decrease in wave size by measuring the
distances between wave rays, and applying Equation 1.15. This method is
quite useful provided wave rays neither approach each other too closely nor
cross over, as in these cases the waves become high, steep and unstable, and
simple wave theory becomes inadequate.

1.5.2 WAVES BREAKING UPON THE SHORE

As a wave breaks upon the shore, the energy it received from the wind is
dissipated. Some energy is reflected back out to sea, the amount depending
upon the slope of the beach — the shallower the angle of the beach slope, the
less energy is reflected. Most of the energy is dissipated as heat and sound
(the ‘roar’ of the surf) in the final small-scale mixing of foaming water, sand
and shingle. Some energy is used in fracturing large rock or mineral
particles into smaller ones, and yet more may be used to move sediments
and increase the height and hence the potential energy of the beach form.
This last aspect depends upon the type of waves. Small gentle waves and
swell tend to build up beaches, whereas storm waves tear them down (see
also Chapter 5).

A breaking wave is a highly complex system. Even some distance before
the wave breaks, its shape is substantially distorted from a simple sinusoidal
wave. Hence the mathematical model of such a wave is more complicated
than we have assumed in this Chapter.

Four major types of breaker can be identified, though you may often see
breakers of intermediate character and/or of more than one type on the same
beach at the same time.

1 Spilling breakers are characterized by foam and turbulence at the wave
crest. Spilling usually starts some distance from shore and is caused when a
layer of water at the crest moves forward faster than the wave as a whole.
Foam eventually covers the leading face of the wave, and such waves are
characteristic of a gently sloping shoreline. A tidal bore (Section 2.4.3) is an
extreme form of a spilling breaker. Breakers seen on beaches during a
storm, when the waves are steep and short, are of the spilling type. They
dissipate their energy gradually as the top of the wave spills down the front
of the crest, which gives a violent and formidable aspect to the sea because
of the more extended period of breaking.

2 Plunging breakers are the most spectacular type. The classical form, much
beloved by surf-riders, is arched, with a convex back and concave front. The
crest curls over and plunges downwards with considerable force, dissipating
its energy over a short distance. Plunging breakers on beaches of relatively
gentle slope are usually associated with the long swells generated by distant
storms. Locally generated storm waves seldom develop into plunging
breakers on gently sloping beaches, but may do so on steeper ones. The
energy dissipated by plunging breakers is concentrated at the plunge point
(i.e. where the water hits the bed) and can have great erosive effect.

3 Collapsing breakers are similar to plunging breakers, except that the
waves may be less steep and instead of the crest curling over, the front face
collapses. Such breakers occur on beaches with moderately steep slopes,
and under moderate wind conditions, and represent a transition from
plunging to surging breakers.
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Figure 1.18 (a) The four types of breaker
seen in perspective view from top to bottom
(1-4): spilling, plunging, collapsing,
surging. The vertical arrow shows their
relationships to beach slope, wave period,
length and steepness.

{b) Cross-sections through the four
breaker types.

(c) Photograph of a breaker, part spilling,
part plunging. See text for further
discussion.

IMPORTANT: When examining Figure 1.18,
you need to be aware that the four types of
breaker illustrated are just stages in a
continuous spectrum; changes from one o
another are gradual, not instantaneous.
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4 Surging breakers are found on the very steepest beaches. Surging
breakers are typically formed from long, low waves, and the front faces and
crests thus remain relatively unbroken as the waves slide up the beach.

Figure 1.18 illustrates the relationship between wave steepness, beach
steepness and breaker type.

The way breaker shape changes from top to bottom of the picture depends
upon:

1 Increasing beach slope (if considered independently from wave
characteristics).

2 Increasing wavelength and period and correspondingly decreasing wave
steepness, if these characteristics are considered independently of beach slope.

It is not always possible to consider 1 and 2 separately, because as you will
see in later Chapters, beach slope is partly influenced by prevailing wave type
and partly by the particle sizes of the beach sediments, which in turn depend
upon the energy of the waves which erode, transport and deposit them.

QUESTION 1.15  If you observed plunging breakers on a beach and walked
along towards a region where the beach became steeper, what different
types of breaker might you expect to see?

From the descriptions, Figure 1.18, and the answer to Question 1.15, it can
be seen that the four types of breaker form a continuous series. The spilling
breaker, characteristic of shallow beaches and steep waves (i.e. with short
periods and large amplitudes), forms one end of the series. At the other end
of the series is the surging breaker, characteristic of steep beaches and of
waves with long periods and small amplitudes. For a given beach, the
arrival of waves steeper than usual will tend to give a type of breaker nearer
the ‘spilling” end of the series, whereas calmer weather favours the surging
type. The dynamics of collapsing (3) and surging (4) breakers are affected
by bottom slope more than those of spilling (1) and plunging (2) breakers.
Spilling and plunging breakers can also occur in deep water, partly because
the sea-bed is far below and does not affect wave dynamics. Collapsing and
surging breakers do not occur in deep water.




1.6.2  GIANT WAVES

The cultures of a] seafaring nations abound with legends of ships being
swamped by gigantic waves, and of sightings of waves of almost
unbelievable size.

An early objective method for estimating the height of large waves was ¢
send a seaman to climb the rigging until he could Just see the horizon ove
the top of the highest waves when the ship was in a wave trough. Thisg

(steepness = 0.1). Such high and steep waves are sometimes preceded by
correspondingly deep troughs, which are particularly dangerous as they can
only be seen by vessels that are on the crest of the preceding wave.

Look again at Fj gure 1.5. The high wave occurring 122 s into the wave
record is preceded by a particular] y deep trough, but that is not the case for
the high wave occurrip gat 173s. As we saw in Section 1.1.4, ocean waves
are rarely regular, and it jg usually not possible to predict the heights of
individual waves, nor the depths of individua] troughs,

QUESTION 1.16 An elderly ex-seaman, in his cups, claims to have seen
gigantic waves in the Southern Ocean, successive peaks of which took
30 seconds to pass, and which had wavelengths twice as long as his ship.
Can you belieye him?

Before dismissing the sailor’s claim in Question 1.16 as a tall story, let ug
éxamine it more closely. Let us Suppose his ship was travelling in the same
direction as the waves and was being overfaken by them, and he had made
the simple mistake of not taking account of the ship’s velocity with respect
to the waves when timing the intervalg between successive peaks.

QUESTION 1.17 Further conversation with the Staman established that his
ship was the cruiser HMS Exeter (1929-42). which at the time of the
incident was Steaming at 23 knots (] .8 ms) in the same direction as the

waves. Given that the Exeter was 575 feet in length (175 m), can you
believe him now?



1.6.3 TSUNAMIS

QUESTION 1.1 What would pe the speed of 4 ISunami acrogs the open
Ocean above ap abyssal plain? (Assume the average depth is 5.5 km.)

Although lsunami travels at great speed in the Open ocean, its waye height is
small, usually in the order of one metre, and 5o it often femains undetected.
On reaching shallow Coastal waters, however, the Speed diminishes, while the
power of the wave remains the same (Section 1.4, 1). Hence the wave energy
(and therefore the wave height, Equations 1.17 and 1.13) myst increase.

Great des truction can pe wreaked by a tsunami. It is pot unknown for
people on board shj bs at anchor offshore t, be unaware of 5 tsunami passing
beneath them, byt [0 witness the adjacent shoreline being pounded by large
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Figure 1.20 (a) Diagrammatic cross-sections showing successive positions (110 9) of the water
surface and accompanying water movements in a simple standing wave or seiche in a closed basin.
(b) Summary diagram of a seiche in a closed basin, showing that maximum vertical motion
occurs at the antinode, and maximum horizontal motion occurs at the node.

(c) Diagrammatic cross-section of a quarter-wavelength standing wave in a small harbour.

(d) Sections showing successive positions of the water surface and accompanying water
movements in a seiche in a harbour or small bay, in sequence 1 to 4: water flows out of the

basin (2) as the wave crest falls, and flows back in (4) as the wave trough fills.
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Where the water level is constant (the node), the horizontal flow of
water from one end of the container to the other is greatest, as the crest
and trough of the seiche alternate at either end of the basin. Where the
fluctuation of water level is greatest (the antinodes, at either end of the
basin), there is minimal horizontal movement of the water. These
oscillatory water movements in a seiche in a closed basin are
summarized in the idealized cross-section, Figure 1.20(b).

If the water depth divided by the length of the container is less than 0.1,
then the waves can be considered to behave as shallow-water waves,
with speed = /gd, and the period of oscillation, T (in seconds), is
given by:

P A (1.17)
Ved

where [ = length of container (in metres); d = depth (in metres); and

g=98ms2

In some basins open to the sea at one end, i.e. in some bays and
estuaries, it is possible for a node to occur at the entrance to the basin
and an antinode at the landward end. Figure 1.20(c) is an idealized
vertical section of such a situation, and Figure 1.20(d) shows the
corresponding oscillatory water movements. In this case, the length of
the basin (/) corresponds to a quarter of the wavelength of the seiche
(L). The corresponding equation for the period is therefore:

g M (1.18)

Tid

T'is here known as the resonant period.

For standing waves to develop, the resonant period of the basin must be
equal to the period of the wave motion or to a small whole number of
multiples of that period.

QUESTION 1.18 A small harbour, open to the sea at one end, is 90 m
long and 10 m deep at high water. What would be the effect of swell
waves of period 18 s arriving at the harbour mouth?

Your answer to Question 1.19 is an example of how the arrival of
waves of a certain frequency can create problems for moored vessels in
small harbours by setting up a standing wave. Just as the seiche in a flat
dish will ‘slop over’ if your standing wave gets too big, so a standing
wave in a harbour may dash vessels against the harbour wall, or even
throw them ashore. When the standing wave is at the low point of the
antinode, there is also the danger of vessels being grounded, thus
suffering damage to their hulls.
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1.8 SUMMARY OF CHAPTER 1

I Idealized waves of sinusoidal form have wavelen gth (length between
successive crests), hei ght (vertical difference between trough and crest),
steepness (ratio of height to length), amplitude (half the wave height),
period (length of time between successive waves passing a fixed point) and
frequency (reciprocal of period). Water waves show cyclical variations in
water level (displacement), from —a (amplitude) in the trou gh to +a at the
crest. Displacement varies not only in space (one wavelength between
successive crests) but also in time (one period between crests at one
location). Steeper waves depart from the simple sinusoidal model, and more
closely resemble a trochoidal wave form.

2 Waves transfer energy across/through material without significant
overall motion of the material itself, but individual particles are displaced
from, and return to, equilibrium positions as each wave passes. Surface
waves occur at interfaces between fluids, either because of relative
movement between the fluids, or because the fluids are disturbed by an
external force (e.g. wind). Waves occurrin g at interfaces between oceanic
water layers are called internal waves. Wind-generated waves, once
initiated, are maintained by surface tension and gravity, although only the
latter is significant for water waves over 1.7 cm wavelength.

3 Most sea-surface waves are wind-generated. The stronger the wind, the
larger the wave, so variable winds produce a range of wave sizes. A
constant wind speed produces a fully developed sea, with waves of Hip
(average height of highest 33% of the waves) characteristic of that wind
speed. The Beaufort Scale relates sea state and & 1/3 to the causative wind
speed.

4 Water particles in waves in deep water follow almost circular paths, but
with a small net forward drift. Path diameters at the surface correspond to
wave heights, but decrease exponentially with depth. In shallow water, the
orbits become flattened near the sea-bed. For waves in water deeper than
172 wavelength, wave speed equals wavelength/period (¢ = L/T) and is
proportional to the square root of the wavelength (¢ = NeL/2m); itis
unaffected by depth. For waves in water shallower than 1/20 wavelength,
wave speed is proportional to the square root of the depth (¢ = ./gd) and
does not depend upon the wavelength. For idealized water waves, the three
characteristics, ¢, L and T, are related by the equation ¢ = L/T. In addition,
cach can be expressed in terms of each of the other two. For example,
¢=1.56T and L = 1.5672.

5 Waves of different wavelengths become dispersed, because those with
greater wavelengths and longer periods travel faster than smaller waves. If
two wave trains of similar wavelength and amplitude travel over the same
sea area, they interact. Where they are in phase, displacement is doubled,
whereas where they are out of phase, displacement is zero. A single wave
train results, travelling as a series of wave groups, each separated from
adjacent groups by an almost wave-frec region. Wave group speed in deep
water is half the wave (phase) speed. In shallowing water, wave speed
approaches group speed, until the two coincide at depths less than 1/20 of
the wavelength, where ¢ = \/gd .
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6 Wave energy is proportional to the square of the wave height, and
travels at the group speed. Wave power is rate of supply of wave energy,
and so it is wave energy multiplied by wave (or group) speed, i.e. it is wave
energy propagated per second per unit length of wave crest (or wave speed
multiplied by wave energy per unit area). Total wave power is conserved, so
waves entering shallowing water and/or funnelled into a bay or estuary (see
also 7 below) increase in height as their group speed falls. Wave energy has
been successfully harnessed on a small scale, but large-scale utilization
involves environmental and navigational problems, and huge capital outlay.

7 Dissipation of wave energy (attenuation of waves) results from white-
capping, friction between water molecules, air resistance, and non-linear
wave—wave interaction (exchange of energy between waves of differing
frequencies). Most attenuation takes place in and near the storm area. Swell
waves are storm-generated waves that have travelled far from their place of
origin, and are little affected by wind or by shorter, high-frequency waves.
The wave energy associated with a given length of wave crest decreases
with increasing distance from the storm, as the wave energy is spread over
an ever-increasing length of wave front.

8 Waves in shallow water may be refracted. Variations in depth cause
variations in speed of different parts of the wave crest; the resulting
refraction causes wave crests to become increasingly parallel with bottom
contours. The energy of refracted waves is conserved, so converging waves
tend to increase, and diverging waves to diminish, in height. Waves in
shallow water dissipate energy by frictional interaction with the sea-bed,
and by breaking. In general, the steeper the wave and the shallower the
beach, the further offshore dissipation begins. Breakers form a continuous
series from steep spilling types to long-period surging breakers.

9 Waves propagating with a current have diminished heights, whereas a
counter-current increases wave height, unless current speed exceeds half the
wave group speed. If so, waves no longer propagate, but increase in height
until they become unstable and break. Tsunamis are caused by earthquakes
or by slumping of sediments, and their great wavelength means their speed
is always governed by the ocean depth. Wave height is small in the open
ocean, but can become destructively large near the shore. Seiches (standing
waves) are oscillations of water bodies, such that at antinodes there are
great variations of water level but little lateral water movement, whereas at
nodes the converse is true. The period of oscillation is proportional to basin
length and inversely proportional to the square root of the depth. A seiche is
readily established when the wavelength of incoming waves is four times
the length of the basin.

10 Waves are measured by a variety of methods, e.g. pressure gauges on
the sea-floor, accelerometers in buoys on the sea-surface, and via remote-
sensing from satellites.
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ANSWERS AND COMMENTS

TO QUESTIONS

CHAPTER 1

Question 1.1 Five seconds. The frequency is 0.2 571, i.e during one second
“0.2 of a wave’ passes a fixed point. To find out how long it takes for the
whole wave to pass (the period), we need to divide 1 by 0.2

T=1/02s5'1=5s.

Question 1.2 The less steep of the two. Since steepness = H/L, and H is the
same for both waves, the less steep wave will have the greater wavelength,
and hence travel faster.

Question 1.3 It decreases. Figure 1.4 shows that the higher the average
frequency of the wave field, the smaller the area under the curve. The
~20ms~! (40-knot) spectrum contains much more energy than either of the
other two spectra. Most of this energy is related to the low frequency (long
period) waves that a 40-knot wind would generate.

Question 1.4 Sixteen waves in 64 seconds = a period of 64/16 seconds = 4 s.
The frequency is thus the reciprocal of 45, i.e. 1/4s =0.25571,

Question 1.5  First, convert frequency f to period T. T = 1/f = 1/0.05 = 20 s.
(a) —a (atrough at P), because 30s = 11 x 20s.
(b) +a (a peak at P), because 80s =4 x 20s.

(c) 0, because 85s =4} x 205 (1 changes from +a to —a in 10 seconds,
so five seconds after a peak (+a), the displacement is zero).

For (d), (e) and (f): the distance between P and Q is half a wavelen ath.
Note that if the displacement at P is zero and is diminishing, then the
displacement at Q is zero and is increasing (and vice versa). Hence:

(d) 0
() +a
(0 o

Question1.6 Ifk=2n/L, and o = 27/T, then L = 27/k, and T = 271/c.
Substituting into ¢ = L /T, we have:

2l k 1/k (o]

2zl 1lo  k

In basic units, angular frequency/wave number is s7/m~! = ms~!, i.e. speed.

Question 1.7  (a) If d is greater than 0.5L, then 2d is greater than L, and the
expression 27td /L, becomes greater than 7. The tanh of numbers greater
than 7 approximates to 1. So tanh (27td /L) = 1 and Equation 1.2
approximates to:

8L
27

L =
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(b) If d/L is very small, then 27d/L is also very small, and hence tanh (27d/L)
approximates to 27d /L. So Equation 1.2 becomes:

_ [¢l2md

& =
V 2#L

Question 1.8  From Equation 1.1, ¢ = L /T,

I

From Equation 1.3, ¢ = \[gL/2x

So \[gL/2m =L/T, and (squaring both sides)

gLi2m = IYT2.
From which L /T 2= g/27 and
E=geT?fn

Question 1.8 (a) ¢=9.8ms2 and 7=3.14, so gl2r=156ms>2

(b) In Equation 1.7: ¢ =+/1.56ms2 x m which gives units of
Vm2s2=msl,

In Equation 1.8: L = 1.56 m s2x s2, which gives units of m (s~2 and s2
cancel out).

In Equation 1.9: ¢ = 1.56 ms~2 x s, which gives units of ms~! (s2x s = 1),

Question 1.10 (a) 31.2ms2 You may have done this the hard way by
L =1.56 x 20 x 20 = 624, followed by ¢ =624/20 =31.2 ms2 Better still,
you may have used Equation 1.9, and done the sum in one step.

(b) The deep water speed of the wave will be 22.1 m s~!. From Equation 1.7,
¢ = V1.56x312 = /4867
=22.1ms™%,

(c) The answer is 10.8 ms~! in both cases. If the depth is less than 1/20 of
the wavelength, all waves will travel at the same depth-determined speed,
1.e. the depth is the only controllin g factor. So from Equation 1.4, we get:

¢ = +fgd
= +0.8%x12 = J117.6
=10.8ms!

Question 1.11  No. It would be quadrupled, because the energy of a wave
varies with the square of the wave hei ght (Equation 1.11), and hence with
the square of the wave amplitude.

Question 1.12  (a) If amplitude is 1.3 m, then wave height is 2.6 m. The
values of the constants g and p , and also the above value for wave height,
can be plugged into Equation 1.11, giving:

E=3x1.03x10°%98x 262

=85x%x 10°Im=2

(The units work out as: kgm=3 x ms~!x m2 = kg s2;
J=kgm?s2 soIJm2iskgm?s2m2= kg s72)



206

(b) The wave power per unit length is the product of the wave energy per
unit area and the group speed. We know the wave energy from (a) above,
and can calculate the group speed from the height and steepness as follows:

steepness (0.04) = height (2.6 m) / wavelength.
So wavelength = 2.6/0.04 = 65 m.

From Equation 1.3, wave speed, ¢ = /gl /2x

= /1.56 X 65
=10ms™!
From which group speed, ¢ = 10/2 =5 ms™1,
So wave power = 8.5 x 10°Tm™?x Sms ! =425kWm .

Question 1.13  Spectrum (a) of Figure 1.12 shows the wave energy
distributed amongst a wide range of frequencies. The peak is rather poorly
defined, and hence must represent the storm-generating area. Spectrum (b),
on the other hand, has a much narrower ran ge of frequencies, and a clearly
defined peak which has shifted to lower frequencies. It thus represents the
regular swell waves at a point well away from the storm. The total energy of
spectrum (b), as represented by the coloured area under the curve, is smaller
than in (a), because the waves have lost some of their energy in transit, as
outlined in the text.

Question 1.14 The wave refraction diagram (Figure 1.17(b)) illustrates how
the offshore Hudson Canyon is effective in defocusing storm waves as they
approach the Long Branch coastal section from the east—south-east, and in
refracting them onto other beaches. Fishermen can leave their boats on the
beach at Long Branch during all seasons of the year, despite its apparent
exposure to the full force of Atlantic storms. The wave rays are, if anything,
focused as they enter the mouth of the Hudson River, so that the energy of
storm waves would certainly not be diminished there, and might even be
increased. People leaving their boats in this apparently sheltered region
could thus be courting disaster.

Question 1.15  If the change in the beach slope was sufficient, you might
expect to see collapsing breakers, and if it got really steep, surging breakers
as well.

Question 1.16  You have no information on the length of the ship, but if you
calculate the wavelength corresponding to a period of 30's, using Equation
1.8, you get L= 15672 = 1.56 x 900 = 1404 m. You might conclude that the
sailor is trying to tell you that his ship was about 700 m long (nearly half a
mile). The longest of today’s supertankers are only about 320 m. However,
return to the main text and read on ...

Question 1.17  Exeter was 175 m in length, so if the seaman’s story were
true, the wavelengths concerned were 350 m. The ship was travelling at
11.8m s, so in 30 seconds it would have travelled 30 x 11.8 m = 354 m. In
30 seconds, an overtaking wave would have travelled one wavelength plus
the distance the ship had travelled, i.e. 354 + 350 = 704 m, and the wave
speed would be 704/30 =23.5ms L.
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From Equations 1.3 and 1.7, we can find the wave speed corresponding to a
wavelength of 350 m, i.e.

¢ = JgL72m =+/156L

= /1.56 x 350 =23.4ms™!

which means the sailor’s tale is at least consistent with simple wave theory.
Full marks if you suspected something of this sort while attempting
Question 1.16.

Question 1.18 Because the wavelength is very long compared with an ocean
depth of 5500 m over the aby ssal plains, the tsunami must be treated as a
shallow-water wave (Equation 1.4):

¢ = /9.8x5500 =232ms!,

which is more than 800 kilometres per hour!

Question 1.19 In Equation 1.18,/=90m, d = 10 m.

SoT=4x90/+9.8x10 =36.36 seconds. Because the resonant period of
the harbour is close to 36's, waves of period 18 s (half of 36 ) would set up
a standing wave in the harbour.




