

Reservoir	Approximate Residence Time
Blaciers	40 years
Seasonal Snow Cover	0.4 years
Soil Moisture	0.2 years
Groundwater: Shallow	200 years
Groundwater: Deep	10,000 years
akes	100 years
Rivers	0.04 years

Temperature mainly controlled by difference in energy entering the water and energy leaving the water

Incoming Radiation (Qs) Heat Gain

- Insolation from the sun
- · Primarily visible energy
- Measured by a radiometer at the surface
- 1 cal = 4.18 Joule
- Units are J /s•m² or Watts/m²
- Typical values = 200 400 W/m²

CMWS 601

Greenhouse Effect

- Most of the heat that is radiated from the surface never escapes into space. It is absorbed by clouds and gases and re-radiated back to the ocean as infrared radiation.
- The part that does escape is usually only about 20-40% of what leaves the surface.
- Based on cloud cover, the % that escapes to space can be estimated. This is the *net* or *effective* back radiation.
- This represents the heat loss (Qb) from the surface waters.

CMWS 601

Net Heat Loss Back to our previous example: $= c_{sb} T(K)^4$ $= (5.67 \times 10^{-8} \text{ W/m}^2 \text{K}^4)(292 \text{ K})^4$ $= 412 \text{ W/m}^2$ •If cloud cover is trapping three-fourths of the outgoing radiation what is the net heat loss?

• Thus, it measures the likelihood of mixing (tides/winds) in the water column

• = - $(1/\overline{\rho}) d \rho / d z$

