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‘... being governed by the watery Moon ...’
Richard ITI, Act 11, Scene II.

The longest oceanic waves are those associated with the tides, and are
characterized by the rhythmic rise and fall of sea-level over a period of half
a day or a day (Figure 1.2). The rise and fall result from horizontal
movements of water (tidal currents) in the tidal wave. The risin g tide is
usually referred to as the flow (or flood), whereas the falling tide is called
the ebb. The tides are commonly regarded as a coastal phenomenon, and
those who see tidal fluctuations only on beaches and in estuaries tend to
think (and speak) of the tide as ‘coming in’ and ‘going out’. However, it is
important to realize that the ebb and flow of the tide at the coast is a
manifestation of the general rise and fall in sea-level caused by a long-
wavelength wave motion that affects the oceans as well as shallow coastal
waters. Nonetheless, because of their long period and wavelength (Figure
1.2), tidal waves behave as shallow-water waves. Do bear in mind also,
from Section 1.6.3, that the destructive waves generated by earthquakes are
not ‘tidal waves’ as so often reported in the press — they are tsunamis, which
also behave as shallow-water waves because of their long wavelength.

From the earliest times, it has been realized that there is some connection
between the tides and the Moon. High tides are highest and low tides are
lowest when the Moon is full or new, and the times of hi gh tide at any given
location can be approximately (but not exactly) related to the position of the
Moon in the sky; and, as we shall see, the Sun also influences the tides.

Before discussing these relationships, we shall first describe some principal
features of tidal wave motions. Figure 2.1 is a tidal record, showing regular
vertical movements of the water surface relative to a mean level, over a
period of about a month.
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Figure 21 A typical 30-day tidal record showing oscillations in water level with a period of
about 12.5 hours, at a station in the Tay estuary, Scotland. 3
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If you compare Figures 2.1 and 1.5, you will see two important differences
between wave motions resulting from the tides and those associated with
wind-generated waves. These are:

1 The period of the oscillations of wind- generated waves (Figure 1.5) is
typically in the order of seconds to a few tens of seconds, and both period
and amplitude of the oscillations can be quite irregular. In contrast, Figure
2.1 shows the period of the tides to be about 12.5 hours, i.e. high and low
tides occur twice a day, and both period and amplitude vary in a systematic
way. (Figure 2.1 illustrates a semi-diurnal tide; we shall consider the
different types of tide later.)

2 Although the amplitude (and height) of tidal and wind- generated wave
motions is of the same order in both Figures 1.5 and 2.1, we have seen that
the heights of wind waves can range from virtually zero to 30 m or more
(Section 1.6.2). By contrast, in most places the tidal range is typically of
the order of a few metres, and tidal ran ges of more than about 10 m are
known only at a few locations. Tidal range nearly always varies within the
same limits at any particular location (Figure 2.1), and because the cause of
tidal wave motion is both continuous and regular, so that the periodicities
that result are pre-determined and fixed (as you will see shortly), tidal range
can be very reliably predicted. Wind-generated waves, on the other hand,
are much less predictable, because of the inherent variability of the winds.
Tidal waves are what are known as ‘forced waves’ because they are
generated by regular (periodic) external forces, and therefore do not behave -
exactly like the gravity waves considered in Chapter 1. For practical
purposes, however, they can be treated as gravi ty waves, especially in the
deep oceans.

In addition to the ~12-hour period of oscillations in Figure 2.1, can you
discern another periodic variation?

A 7-8-day periodicity can also be seen: around days 9 to 11 and 23 to 26,
the tidal range is more than twice what it is around days 0to 2 and 16 to 18.
This 7-8-day alternation of high and low tidal range (spring and neap tides,
respectively) can also be predicted with great accuracy and characterizes
tides all over the world (see Section 2.2. 1).

What are the ranges of the spring and neap tides on Figure 2.1?

Spring tides have an amplitude of nearly 3m (i.e. above and below the
mean water level), so the spring tidal range is close to 6 m. In contrast, the
neap tides have a range of little more than 2 m.

Where there is urban or industrial development in coastal areas, it is common
for high and low tidal levels to be quite rigorously identified, because along
gently sloping shorelines a tidal range of even a couple of metres results in
substantial areas of ground being alternately covered and exposed by the
flooding and ebbing tides. In coastal areas, maps and plans commonly
indicate Mean High Water and Mean Low Water, as well as the Mean Tide
Level. The Mean Tide Level is often used as a datum or baseline for
topographic survey work, i.e. it is the baseline for all measurements of
elevation and depth on maps and charts. For example, in Britain, this baseline
(known as the Ordnance Datum) is the Mean Tide Level at a specific location
at Newlyn in Cornwall.
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This discussion of tidal levels raises an important general point about
people’s perception of the tides. As mentioned earlier, those who see tidal
fluctuations only on beaches or in estuaries tend to perceive the tide as
‘coming in” and ‘going out’. In fact, the sea advances over and retreats from
the land only because the water level is rising and falling with the passage
of tidal waves like those illustrated in Figure 2.1.

So much for some basic descriptions of the tides. We must now consider the
forces that cause them. The relative motions of the Earth, Sun and Moon are
complicated, and so their influence on tidal events results in an equally
complex pattern. Nevertheless, as we have just seen, the actual motions of
the tides are quite regular, and the magnitudes of the tide- generating forces
can be precisely formulated. Although the response of the oceans to these
forces is modified by topography and by the transient effects of weather
patterns, it is possible to make reliable predictions of the tides for centuries
ahead (and indeed to relate specific historical events to tidal states many
centuries in the past).

2.1 TIDE-PRODUCING FORCES — THE EARTH-MOON
SYSTEM

The Earth and the Moon behave as a single system, rotating about a
common centre of mass, with a period of 27.3 days. The orbits are in fact
elliptical, but to simplify matters we will treat them as circular for the time
being. The Earth rotates eccentrically about the common centre of mass
(centre of gravity), which is within the Earth and lies about 4700 km from
its centre. Figure 2.2 illustrates the motions that result. The principal
consequence of the eccentric motion about the Earth-Moon centre of mass
is this: All points on and within the Earth must also rotate about the
common centre of mass and so they must all follow the same elliptical path.
So each point must have the same angular velocity (27/27.3 days), and
hence will experience the same centrifugal force (which is proportional to
acceleration towards the centre, i.e. to the product of the radius and the
square of the angular velocity).

The eccentric motion described above has nothing whatsoever to do with
the Earth’s rotation (spin) upon its own axis, and should not be confused
with it (we have shown the Earth’s rotation axis on Figure 2.2 for the
situation where the Moon is directly above the Equator, which happens only
twice every 27.3 days — see Section 2.1.1 and Figure 2.8). Nor should the
centrifugal force resulting from the eccentric motion (which is equal at all
points on Earth) be confused with the centrifugal force caused by the
Earth’s spin (which increases with distance from the rotation axis).

If you find these concepts difficult, the following simple analogy may help.
Imagine you are whirling a small bunch of keys on a short length (say

25 cm) of chain. The keys represent the Moon, and your hand represents the
Earth. You are rotating your hand eccentrically (but unlike the Earth it is not
spinning as well), and all points on and within your hand are experiencing
the same angular velocity and the same centrifugal force. Provided your
bunch of keys is not too large, the centre of mass of the ‘hand-and-key’
system lies within your hand.
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Figure 2.2 Rotation of the Earth-Moon system (not to scale). The Moon orhits the Earth
about their common centre of mass (located within the Earth) once every 27.3 days. The
centre of the Earth also rotates about this centre of mass once every 27.3 days, describing a
very much smaller orbit (fine black line), as do all other points on and within the Earth. Note
that the orbits are shown as circular for simplicity, whereas in fact they are elliptical (see later
text); note also that the Farth’s own central rotation axis is shown here as perpendicular to the
plane of the Moon’s orbit, which happens twice every 27.3 days - see Figure 2.8.

In the text which follows, you do not need to understand the details of the
explanation related to Figures 2.3 and 2.4. However, you do need to be
aware of the relationship embodied in Equation 2.2 on p- 35, i.e. that tide-
producing forces are inversely proportional to the cube of the Earth-Moon
distance, and that the tide-producing forces are greatest along the small
circles shown in Figure 2 4(a).

The total centrifugal force actin g on the Earth-Moon system exactly
balances the forces of gravitational attraction between the two bodies, so the
sSystem is in equilibrium, i.e. we should neither lose the Moon, nor collide
with it, in the near future. The centrifugal forces are directed parallel to a
line joining the centres of the Earth and the Moon (see red arrows on

Figure 2.3, overleaf). Now consider the gravitational force exerted by the
Moon on the Earth. Its ma gnitude will not be the same at all points on the
Earth’s surface, because they are not at the same distance from the Moon.
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Figure 2.3 The derivation of the tide-producing
forces (not to scale), for a hypothetical water-
covered Earth. The centrifugal force has exactly
the same magnitude and direction at all points,
whereas the gravitational force exerted by the
Moon on the Earth varies in both magnitude
(inversely with the square of the distance from
the Moon) and direction (directed towards the
Moon’s centre, but shown with the angles
exaggerated for clarity). The tide-producing force
at any point (thick purple arrows) is the resuftant
of the gravitational and centrifugal force at that
point, and varies inversely with the cube of the
distance from the Moon (see text).
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QUESTION 2.1 What would be the direction and approximate magnitude
(within the context of Figure 2.3) of the tide-producing forces at:

(a) apoint on the Earth’s surface represented by point X on Figure 2.37
(b) the Earth’s centre?

The gravitational force (F,) between two bodies 1s given by:

M
F:Gle

£ R2 (2.1)

where M, and M, are the masses of the two bodies, R is the distance
between their centres, and G is the universal gravitational constant
(whose value is 6.672 x 101! N m?kg2).

However, we need to reconcile Equation 2.1 with the statement in the
caption to Figure 2.3 that the magnitude of the tide-producing force exerted
by the Moon on the Earth varies inversely with the cube of the distance.
Consider the point marked G on Figure 2.3. The gravitational attraction of
the Moon at G (F ) is greater there than that at the Earth’s centre, because
G is nearer to the Moon by the distance of the Earth’s radius (a). The
gravitational force exerted by the Moon at the Earth’s centre is exactly equal
and opposite to the centrifugal force there, so the tide-producing force at the
centre of the Earth is zero. Now as the centrifugal force is equal at all points
on Earth, and at the Earth’s centre is equal to the gravitational force exerted
there by the Moon, it follows that we can substitute the expression on the
right-hand side of Equation 2.1 (i.e. GM;M,/R?) for the centrifugal force.
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The tide-producing force at point G (TPFg) is given by the force due to
gravitational attraction of the Moon at G (Fyg) minus the centrifugal force at G, i.e.
GM\M, GMM,

TPFo= z_g? R °

which simplifies to:

GM]Mza (ZR_ a)

TPFo= ~ R(R—a)

Now a is very small compared to R, so (2R — a) can be approximated to 2R,
and (R — a)? to RZ, giving the relationship:

GMMy2a

TP APG = R3

(22)
In other words, the tide-producing force is proportional to 1/R3.

Before reading on, have another look at Figure 2.3, and consider at which of
the lettered points on that Figure the local tide-producing force would have
most effect in generating tides.

You may have considered point G as your answer. Certainly, G 1s nearest to
the Moon, and hence is one of the two points where the difference between
the centrifugal force and the gravitational force exerted by the Moon is
greatest. However, at point G all the resultant tide-producing force is acting
vertically against the pull of the Earth’s own gravity, which happens to be
about 9 x 106 greater than the tide-producing force. Hence the local effect of
the tide-producing forces at point G is negligible. Similar arguments apply at
point A, except that the gravitational attraction of the Moon at point A (Fgn)
is less than the centrifugal force, and consequently the tide-producing force at
A is equal in magnitude to that at G, but directed away from the Moon
(Figure 2.3).

The points we need to identify are those where the horizontal component of the
tide-producing force, i.e. the tractive force, is at a maximum. Such points do not
lie directly on a line joining the centres of the Earth and Moon, and so
Equation 2.2 becomes slightly more complex. For example, at point P on
Figure 2.4(a) the gravitational attraction (Fgp) would be, to a first approximation:

GM M,

. 2.3
(R—acos y)* =0

Fop=

The length a cosy is marked on Figure 2.4(a) (y is the Greek letter “psi’).

Equations such as 2.3 can be used to show that the tractive force is greatest at
points along the small circles defined in Figure 2.4(a), which have nothing to
do with latitude or longitude.

It is the tractive force that causes the water to move, because this horizontal
component (by definition parallel to —i.e. tangential to — the Earth’s surface at the
location concerned) is unopposed by any other lateral force (apart from friction
at the sea-bed, which is negligible in this context). The gravitational force due
to the Earth is much greater than the tractive force but acts at right angles to it
and so has no effect. The longest arrows on Figure 2.4(b) show where on the
Earth the tractive forces are at a maximum when the Moon is over the Equator.
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Figure 2.4 (a) The effect of the gravitational
force of the Moon at three positions on the
Earth. The gravitational force is greatest at G
{nearest the Moon) and least at A (furthest from
the Moon). At P the gravitational force is less
than at G, and can be calculated from Equation
2.3. The tide-producing forces are smallest at A
and G, but greatest at P, and all other points on
the two small circles. The value for the angle v
for these circles is 54° 41", The circles have
nothing to do with latitude and longitude. For
explanation, see text.

(b) The relative magnitudes of the tractive
forces (i.e. of the horizontal components of the
tide-producing forces, shown as purple arrows
on Figure 2.3) at various points on the Earth’s
surface. The Moon is assumed to be directly
over the Equator (i.e. at zero declination, see
Section 2.1.1). Points A and G correspond to
those on (a) and in Figure 2.3.
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In this simplified case, the tractive forces would result in movement of water
towards points A and G on Figure 2.4(b). In other words, an equilibrium state
would be reached (called the equilibrium tide), producing an ellipsoid with
its two bulges directed towards and away from the Moon. So, paradoxically,
although the tide-producing forces are minimal at A and G, those are the
points towards which the water would tend to go. Figure 2.5 shows how such
an equilibrium tidal ellipsoid would look in the simplified case we have been
considering, i.e. a completely water-covered Earth with the Moon directly
above the Equator and the distribution of tractive forces as in Figure 2.4(b).

If you found Figures 2.3 and 2.4 and related text and equations difficult to
follow, here is a shorter explanation of why there are two equilibrium tidal
bulges (Figure 2.5). The centrifugal force acts in the same direction all over
the Earth, i.e. away from the Moon (Figure 2.3). Moreover, on the side of the
Earth away from the Moon, the gravitational attraction due to the Moon is
less than it is on the side of the Earth facing the Moon. The resultant tide-
producing force thus acts away from the Moon at points such as A on

Figure 2.3. That is why there is a tidal bulge away from the Moon as well as a
bulge towards it (Figure 2.5). The mathematics of the relationship is such that
theoretically the corresponding tide-producing forces on either side of the
Earth are equal and opposite.



tidal bulge
(exaggerated)

Figure 2.6  Rotation of the Earth within the
equilibrium tidal bulge (seen from above the
North Pole and not to scale), showing how a
point on the Earth’s surface would experience
two high tides (1 and 3) and two low tides

(2 and 4) during each complete rotation of the
Earth about its axis.
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Figure 2.5 The equilibrium tidal ellipsoid (not to scale) as it would appear on a water-covered
Earth with the Moon directly above the Equator.

In practice, the equilibrium ellipsoid does not develop, partly because the
Earth is not of course entirely water-covered, but chiefly because the Earth
rotates about its own axis. If the two bulges were to maintain their positions
relative to the Moon, they would have to travel around the world at the
same rate (but in the opposite direction) as the Earth rotates about its axis.
Any point on the Earth’s surface would thus encounter two high and two
low tides during each complete rotation of the Earth (i.e. each day), as
illustrated in Figure 2.6.

In fact, Figure 2.6 is an oversimplification. Can you see why (apart from the
idealized tidal bulges)?

Figure 2.6 shows both Moon and tidal bulges remaining stationary during a
complete rotation of the Earth. That cannot be the case, for the Moon
continues to travel in its orbit as the Earth rotates. Because the Moon
revolves about the Earth-Moon centre of mass once every 27.3 days, in the
same direction as the Earth rotates upon its own axis (which is once every
24 hours), the period of the Earth’s rotation with respect to the Moon is

24 hours and 50 minutes. This is the lunar day.

What effect would this have upon the interval between successive high tides
and successive low tides, in Figure 2.6?

The interval between successive high (and low) tides would be about 12 hours
25 minutes — and the interval between high and low tide would be close to

6 hours 12} minutes. This is the reason why the times of high tides at many
locations are almost an hour later each successive day (Figure 2.7, overleaf).

The equilibrium tidal concept also brings out another very important aspect
of tidal wave motions.

Looking at Figures 2.5 and 2.6, would you say that tidal waves are more
likely to travel as deep- or as shallow-water waves?
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Moon overhead at X

Figure 2.7  The relationship between a solar day
of 24 hours and a lunar day of 24 hours and 50
minutes as seen from above the Earth’s North
Pole. Point X on the Earth’s surface when the
Moon is directly overhead comes back to its
starting position 24 hours later. Meanwhile, the
Moon has moved on in its orbit, so that point X
has to rotate further (another 50 minutes’ worth)
before it is once more directly beneath the
Moon. (Diagram not to scale.)

24 hours later 24 hours 50 mins later

There are two ‘peaks’ (high tide, 1 and 3 in Figure 2.6) and two ‘troughs’
(low tide, 2 and 4 in Figure 2.6) for one Earth circumference, which is
about 40 000 km. So the wavelength of the bulges in Figures 2.5 and 2.6 is
of the order of half the Earth’s circumference (~20000 km). Even in the real
oceans, tidal wavelengths are many thousands of km, and the average depth
of the ocean basins is less than 4 km, i.e. much less than 1/20 of the
wavelength (Section 1.2.3). So tidal waves must travel as shallow-water
waves, and their speed is governed by Equation 1.4, i.e. the shallower the
water the slower they travel. Moreover, just as the height of wind-generated
waves increases as they are slowed down on ‘feelin g’ the sea-bed (Section
1.5), so also does tidal range increase as the tidal waves are slowed down
over the continental shelf. Tidal ranges are greater and tidal currents are
therefore faster in shallow seas and along coasts than in the open oceans
(cf. Figures 2.14 and 2.15).

QUESTION 2.2

(a) Using a value of 40 000 km for the Earth’s circumference and a period
of 24 hr 50 min. (the lunar day), calculate the speed at which the tidal bulges
would have to move relative to the Earth’s surface along the Equator, in
order to ‘keep up’ with the Moon and so maintain an equilibrium tide.
(Assume for simplicity that the Moon is directly overhead at the Equator.)

(b) According to Equation 1.4, how deep would the oceans have to be to
allow the tidal bulges to travel as shallow-water waves at the speed you
calculated in part (a)?

Your answer to Question 2.2 shows that in practice an equilibrium tide
cannot occur at low latitudes on Earth — though it could in principle do so at
high latitudes, where distances round the Earth are much less.



Figure 2.8 Declination of the Moon results
from the plane of the Moon’s orbit being at an
angle to that of the Earth’s Equator (shaded). For
numbers, see text. Diagram is not to scale, and
the Moon’s orbit is shown as circular for
simplicity (see item 2 overleaf).
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The concept of the equilibrium tide was developed by Newton in the
seventeenth century, and we have seen that it demonstrates the fundamental
periodicity of the tides on a semi-diurnal basis of 12 hours and 25 minutes
(Figures 2.6 and 2.7), also that tidal waves must travel as shallow-water
waves in the oceans. We can use this concept to explore other aspects of
tidal phenomena too, even though the actual tides cannot behave like the
equilibrium tide (see Section 2.3) because of the existence of continents.

2.1.1 VARIATIONS IN THE LUNAR-INDUCED TIDES

The relative positions and orientations of the Earth and Moon are not
constant, but vary according to a number of interacting cycles. As far as a
simple understanding of the tide-generating mechanism is concerned, only
two cycles have a significant effect on the lunar tides.

1 The Moon’s declination

The Moon’s orbit is not in the plane of the Earth’s Equator, but is inclined
to it (Figure 2.8). This means that a line joining the centre of the Earth to
that of the Moon makes an angle ranging from zero up to 28.5° on either
side of the equatorial plane (see later text). This angle is the declination of
the Moon. The result is that, to an observer on Earth, successive paths of the
Moon across the sky appear to rise and fall over the 27.3-day period of
rotation of the Moon about the Earth (strictly, about the centre of mass of
the Earth—-Moon system, Figure 2.2), in a similar way to the seasonal
variation of the Sun’s apparent daily path across the sky over the course of a
year (i.e. lower in the sky in winter, higher in the summer, see Figure 2.11).

N

Moon's orbit

At which of the numbered positions of the Moon in its orbit in Figure 2.8 is
the declination at a maximum and at which is it zero? What is the time
interval between the successive numbered positions on Figure 2.87

Declination is maximum at positions 1 and 3, and zero at positions 2 and 4
when the Moon is overhead at the Equator. The interval between successive
numbered positions in Figure 2.8 is close to seven days (27.3/4). Since the
maximum lunar declination is 28.5°, the Moon can never be seen directly
overhead poleward of latitude 28.5° N or 28.5° S. So, for example, in
southern Britain at about 50° N, the Moon (like the Sun) is always seen in
the southern sky. Conversely, in Tasmania for example, at about 40° S, the
Moon (like the Sun) is always seen in the northern sky.
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Figure 2.9 The production of unequal tides
(tropic tides — see text) at mid-latitudes
consequent upon the Moon’s declination. An
observer at Y will experience a higher high tide
than an observer at X; 12 hours and 25 minutes
later, their observations will be reversed.

When the Moon is at any angle of declination other than zero, the plane of
the two tidal bulges will be offset with respect to the Equator, and their
effects at a given latitude will be unequal, particularly at mid-latitudes.
Hence the heights reached by the semi-diurnal (i.e. twice daily) high tides
will show diurnal (i.e. daily) inequalities (Figure 2.9); these will be greatest
when the Moon is at maximum declination.
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QUESTION 2.3  Assuming that Figure 2.9 shows maximum declination, what
will be the extent of the diurnal tidal inequality due to the Moon as seen by
a coastal observer at about 28° 30 south latitude: (a) roughly seven days
and (b) roughly 14 days after the situation shown?

Your answer to Question 2.3 emphasizes the cyclical nature of this diurnal
tidal inequality. At maximum declination, the Moon is approximately above
one of the Tropics (latitude 23.4° N or S), the diurnal inequality is greatest
all over the world, and the tides are known as tropic tides (Moon at
positions 1 and 3 on Figure 2.8); whereas at minimum (zero) declination
(when the Moon is above the Equator), there is no diurnal inequality
anywhere in the world and the tides are called equatorial tides (Moon at
positions 2 and 4 on Figure 2.8).

2 The Moon’s elliptical orbit

The orbit of the Moon around the Earth-Moon centre of mass is not circular
but elliptical, and the Earth is not at the centre of the ellipse, but at one of
the foci (Figure 2.10). The consequent variation in distance from Earth to
Moon results in corresponding variations in the tide-producing forces.
When the Moon is closest to Earth, it is said to be in perigee, and the
Moon’s tide-producing force is increased by up to 20% above the average
value. When the Moon is furthest from Earth, it is said to be in apogee, and
the tide-producing force is reduced to about 20% below the average value.
The difference in the Earth—-Moon distance between apogee and perigee is
about 13%, and tidal ranges are greater when the Moon is at perigee.
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Figure 2.11 The Earth’s elliptical orbit round
the Sun (not to scale), illustrating four monthly
positions corresponding to the seasonal cycle, at
summer and winter solstices, and at spring and
autumn equinoxes. The plane of the Earth’s
Equator makes an angle of 23.4° with the plane
of the ecliptic (plane of Earth’s orbit), so the tilt
of the Earth’s axis is 23.4°, and that is why the
Tropics of Cancer and Capricorn are at latitudes
23.4° N and S respectively. The Earth is closest
to the Sun in January and furthest away in July.

2.2 TIDE-PRODUCING FORCES — THE EARTH-SUN SYSTEM

Like the Moon, the Sun also produces tractive forces and two equilibrium
tidal bulges. Although enormously greater in mass than the Moon, the Sun
1s some 360 times further from the Earth, so the magnitude of its tide-
producing force is about .46 that of the Moon. As we saw in Section 2.1,
tide-producing forces vary directly with the mass of the attracting body, but
are inversely proportional to the cube of its distance from Earth. The two
solar equilibrium tides produced by the Sun sweep westwards around the
globe as the Earth spins towards the east. The solar tide thus has a semi-
diurnal period of twelve hours.

Just as the relative heights of the two semi-diurnal lunar tides are influenced
by the Moon’s declination, so there are diurnal inequalities in the solar-
induced components of the tides because of the Sun’s declination.

The Sun’s declination varies over the seasonal yearly cycle, and ranges up
to 23.4° either side of the equatorial plane. This angle of 23.4° is the angle
between the plane of the Earth’s Equator and the plane of the ecliptic
(Section 2.1.1) and is therefore also the tilt of the Earth’s axis (Figure 2.11).

As in the case of the Moon’s orbit round the Earth, the orbit of the Earth
around the Sun is elliptical. When the distance between Earth and Sun is at
a minimum the Earth is said to be at perihelion; when it is at a maximum,
the Earth is said to be at aphelion. However, the difference in Earth—Sun
distance between perihelion and aphelion is only about 4%, compared with
an approximate 13% difference in Earth-Moon distance between lunar
perigee and apogee. Characteristics of the Earth’s orbit round the Sun
change cyclically over periods of tens of thousands of years, and these will
of course affect the tides, but not on time-scales which concern us for the
purposes of this Volume.

QUESTION 2.4 According to Figure 2.11, at what time(s) of the year will the
solar-induced component of the tide be at its strongest?
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2.2.1 INTERACTION OF SOLAR AND LUNAR TIDES

In order to understand the interaction between solar and lunar tides, it is
helpful to consider the simplest case, where the declinations of the Sun and
Moon are both zero. Figure 2.12 (overleaf) shows these conditions, looking
down on the Earth from above the North Pole. In Figure 2.12(a) and (c), the
tide-generating forces of the Sun and Moon are acting in the same
directions, and the solar and lunar equilibrium tides coincide, i.c. they are in
phase, so that they reinforce each other. The tidal range produced is larger
than the average, i.e. the high tide is higher and the low tide is lower. Such
tides are known as spring tides. When spring tides occur, the Sun and
Moon are said to be either in conjunction (at new Moon — Figure 2.12(a)) or
in opposition (at full Moon — Figure 2.12(c)). There is a collective term for
both situations: the Moon is said to be in syzygy (pronounced ‘sizzijee’).

In Figure 2.12(b) and (d), the Sun and Moon act at right angles to each
other, the solar and lunar tides are out of phase, and do not reinforce each
other. The tidal range is correspondingly smaller than average. These tides
are known as neap tides, and the Moon is said to be in quadrature when
neap tides occur. Inshore fishermen sometimes refer to spring and neap
tides by the descriptive names of ‘long” and ‘short’ tides respectively.

The complete cycle of events in Figure 2.12 takes 29.5 days and the reason
why this cycle is different from the Earth-Moon rotation period of 27.3
days (Figure 2.2) can be seen by reference to Figure 2.13(a) (which 1s
analogous to Figure 2.7). It is simply that in the 27.3 days taken by the
Moon to make a complete orbit of the Earth, the Earth—-Moon system has
also been orbiting the Sun. For the Moon to return to the same position
relative to both Barth and Sun, it must move further round in its orbit, and
that takes an extra 2.2 days or so.

Figure 2.13(b) is a summary diagram of the combined motions of Earth and
Moon about the Sun. It shows how both the Moon and the centre of the
Earth trace out undulating paths as they themselves rotate about their
common centre (the centre of mass of the Earth—-Moon system, Figure 2.2).
The diagram also illustrates the 29.5-day spring-neap cycle of Figure 2.12,
a period sometimes called the synodic month but more commonly known as
the lunar month (i.e. the period between successive new Moons). The
27.3-day period of rotation of the Moon about the Earth-Moon centre of

~ mass is known as the sidereal month.

QUESTION 2.5

(a) What is the time interval between two successive neap tides?

(b) What is the state of the tide 22 days after the Moon is in syzygy?

(c) How soon after the new Moon might a tide of ‘average’ range be
expected?

(d) Figure 2.12 illustrates the simplest case of zero declination for both Sun
and Moon. Bearing this in mind, what astronomical phenomena would be
observed on the Earth’s Equator if the Sun, Moon and Earth were in the
positions shown in Figure 2.12(a) and (c) respectively?

It is crucial to realize from Figure 2.12 that spring and neap tides must each
occur at about the same time all over the world, because the Earth rotates
within the tidal bulges (cf. Figure 2.6), which themselves move only in
response to orbital motions of Moon and Earth. For the same reason, the
tropic and equatorial tides (Section 2.1.1) must also occur at the same times.
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Figure 2.12  Diagrammatic representation (not to scale) of the interaction of the

solar and lunar tides, as seen from above the Earth’s North Pole, showing

direction of rotation of the Earth (arrowed) and the tidal bulges caused by the

Moon and the Sun.

(a) New Moon. Moon in syzygy (Sun and Moon in conjunction, i.e. positioned

above the same line of Earth’s longitude). Spring tide.

(b) First quarter. Moon in quadrature (overhead positions of Sun and Moon

separated by 90° of Earth’s longitude). Neap tide.

Ko (c) Full Moon. Moon in syzygy (Sun and Moon in opposition, i.e. overhead
positions separated by 180° of Earth’s longitude). Spring tide.

O (d) Third (or last) quarter. Moon again in quadrature (see (b)). Neap tide.

(d
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Figure 2.13 (a) Diagram (not to scale), illustrating how the Moon (shown here in

conjunction) must travel further round its orbit to return to the same position relative to both
Earth and Sun, because the Earth has also moved in its orbit relative to the Sun. For simplicity
both orbits are portrayed as circular.

(b) Summary diagram (not to scale) of combined motions of Earth and Moon about the Sun
and about the centre of mass of the Earth—-Moon system. For simplicity, orhits are assumed to
be circular. Note: synodic month = lunar month (see p. 63).

The regular changes in the declinations of the Sun and Moon, and their
cyclical variations in position with respect to the Earth, produce very many
harmonic constituents, each of which contributes to the tide at any
particular time and place. One interesting situation is the ‘highest
astronomical tide’, 1.e. that which would create the greatest possible tide-
producing force, with the Earth at perihelion, the Moon in perigee, the Sun
and Moon in conjunction and both Sun and Moon at zero declination. Such
a rare combination would produce tidal ranges greater than normal, all over
the world. For example, at Newlyn, Cornwall, the normal tidal ran geis
about 3.5 m, the mean spring tidal range about 5 m, and the highest
astronomical tidal range about 6 m. However, there is no immediate need to
sell any seaside property which you may own — the next such event is not
due until about AD 6580.



